Spaces:
Sleeping
Sleeping
import os | |
import sys | |
import librosa | |
import numpy as np | |
import resampy | |
import torch | |
import torchcrepe | |
import tqdm | |
from utils.binarizer_utils import get_pitch_parselmouth, get_mel_torch | |
from modules.vocoders.nsf_hifigan import NsfHifiGAN | |
from utils.infer_utils import save_wav | |
from utils.hparams import set_hparams, hparams | |
sys.argv = [ | |
'inference/svs/ds_acoustic.py', | |
'--config', | |
'configs/acoustic.yaml', | |
] | |
def get_pitch(wav_data, mel, hparams, threshold=0.3): | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# crepe只支持16khz采样率,需要重采样 | |
wav16k = resampy.resample(wav_data, hparams['audio_sample_rate'], 16000) | |
wav16k_torch = torch.FloatTensor(wav16k).unsqueeze(0).to(device) | |
# 频率范围 | |
f0_min = 40 | |
f0_max = 800 | |
# 重采样后按照hopsize=80,也就是5ms一帧分析f0 | |
f0, pd = torchcrepe.predict(wav16k_torch, 16000, 80, f0_min, f0_max, pad=True, model='full', batch_size=1024, | |
device=device, return_periodicity=True) | |
# 滤波,去掉静音,设置uv阈值,参考原仓库readme | |
pd = torchcrepe.filter.median(pd, 3) | |
pd = torchcrepe.threshold.Silence(-60.)(pd, wav16k_torch, 16000, 80) | |
f0 = torchcrepe.threshold.At(threshold)(f0, pd) | |
f0 = torchcrepe.filter.mean(f0, 3) | |
# 将nan频率(uv部分)转换为0频率 | |
f0 = torch.where(torch.isnan(f0), torch.full_like(f0, 0), f0) | |
# 去掉0频率,并线性插值 | |
nzindex = torch.nonzero(f0[0]).squeeze() | |
f0 = torch.index_select(f0[0], dim=0, index=nzindex).cpu().numpy() | |
time_org = 0.005 * nzindex.cpu().numpy() | |
time_frame = np.arange(len(mel)) * hparams['hop_size'] / hparams['audio_sample_rate'] | |
f0 = np.interp(time_frame, time_org, f0, left=f0[0], right=f0[-1]) | |
return f0 | |
set_hparams() | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
vocoder = NsfHifiGAN() | |
in_path = 'path/to/input/wavs' | |
out_path = 'path/to/output/wavs' | |
os.makedirs(out_path, exist_ok=True) | |
for filename in tqdm.tqdm(os.listdir(in_path)): | |
if not filename.endswith('.wav'): | |
continue | |
wav, _ = librosa.load(os.path.join(in_path, filename), sr=hparams['audio_sample_rate'], mono=True) | |
mel = get_mel_torch( | |
wav, hparams['audio_sample_rate'], num_mel_bins=hparams['audio_num_mel_bins'], | |
hop_size=hparams['hop_size'], win_size=hparams['win_size'], fft_size=hparams['fft_size'], | |
fmin=hparams['fmin'], fmax=hparams['fmax'], | |
device=device | |
) | |
f0, _ = get_pitch_parselmouth( | |
wav, samplerate=hparams['audio_sample_rate'], length=len(mel), | |
hop_size=hparams['hop_size'] | |
) | |
wav_out = vocoder.spec2wav(mel, f0=f0) | |
save_wav(wav_out, os.path.join(out_path, filename), hparams['audio_sample_rate']) | |