Spaces:
Sleeping
Sleeping
import numpy as np | |
import onnxruntime as ort | |
import tqdm | |
n_tokens = 10 | |
n_frames = 100 | |
n_runs = 20 | |
speedup = 20 | |
provider = 'DmlExecutionProvider' | |
tokens = np.array([[1] * n_tokens], dtype=np.int64) | |
durations = np.array([[n_frames // n_tokens] * n_tokens], dtype=np.int64) | |
f0 = np.array([[440.] * n_frames], dtype=np.float32) | |
speedup = np.array(speedup, dtype=np.int64) | |
session = ort.InferenceSession('model1.onnx', providers=[provider]) | |
for _ in tqdm.tqdm(range(n_runs)): | |
session.run(['mel'], { | |
'tokens': tokens, | |
'durations': durations, | |
'f0': f0, | |
'speedup': speedup | |
}) | |
session = ort.InferenceSession('model2.onnx', providers=[provider]) | |
for _ in tqdm.tqdm(range(n_runs)): | |
session.run(['mel'], { | |
'tokens': tokens, | |
'durations': durations, | |
'f0': f0, | |
'speedup': speedup | |
}) | |