Spaces:
Sleeping
Sleeping
import json | |
import pathlib | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from lightning.pytorch.utilities.rank_zero import rank_zero_info | |
from torch.nn import Conv1d, ConvTranspose1d | |
from torch.nn.utils import weight_norm, remove_weight_norm | |
from .env import AttrDict | |
from .utils import init_weights, get_padding | |
LRELU_SLOPE = 0.1 | |
def load_model(model_path: pathlib.Path): | |
config_file = model_path.with_name('config.json') | |
with open(config_file) as f: | |
data = f.read() | |
json_config = json.loads(data) | |
h = AttrDict(json_config) | |
generator = Generator(h) | |
cp_dict = torch.load(model_path, map_location='cpu') | |
generator.load_state_dict(cp_dict['generator']) | |
generator.eval() | |
generator.remove_weight_norm() | |
del cp_dict | |
return generator, h | |
class ResBlock1(torch.nn.Module): | |
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)): | |
super(ResBlock1, self).__init__() | |
self.h = h | |
self.convs1 = nn.ModuleList([ | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], | |
padding=get_padding(kernel_size, dilation[0]))), | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], | |
padding=get_padding(kernel_size, dilation[1]))), | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2], | |
padding=get_padding(kernel_size, dilation[2]))) | |
]) | |
self.convs1.apply(init_weights) | |
self.convs2 = nn.ModuleList([ | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, | |
padding=get_padding(kernel_size, 1))), | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, | |
padding=get_padding(kernel_size, 1))), | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, | |
padding=get_padding(kernel_size, 1))) | |
]) | |
self.convs2.apply(init_weights) | |
def forward(self, x): | |
for c1, c2 in zip(self.convs1, self.convs2): | |
xt = F.leaky_relu(x, LRELU_SLOPE) | |
xt = c1(xt) | |
xt = F.leaky_relu(xt, LRELU_SLOPE) | |
xt = c2(xt) | |
x = xt + x | |
return x | |
def remove_weight_norm(self): | |
for l in self.convs1: | |
remove_weight_norm(l) | |
for l in self.convs2: | |
remove_weight_norm(l) | |
class ResBlock2(torch.nn.Module): | |
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)): | |
super(ResBlock2, self).__init__() | |
self.h = h | |
self.convs = nn.ModuleList([ | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], | |
padding=get_padding(kernel_size, dilation[0]))), | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], | |
padding=get_padding(kernel_size, dilation[1]))) | |
]) | |
self.convs.apply(init_weights) | |
def forward(self, x): | |
for c in self.convs: | |
xt = F.leaky_relu(x, LRELU_SLOPE) | |
xt = c(xt) | |
x = xt + x | |
return x | |
def remove_weight_norm(self): | |
for l in self.convs: | |
remove_weight_norm(l) | |
class SineGen(torch.nn.Module): | |
""" Definition of sine generator | |
SineGen(samp_rate, harmonic_num = 0, | |
sine_amp = 0.1, noise_std = 0.003, | |
voiced_threshold = 0, | |
flag_for_pulse=False) | |
samp_rate: sampling rate in Hz | |
harmonic_num: number of harmonic overtones (default 0) | |
sine_amp: amplitude of sine-waveform (default 0.1) | |
noise_std: std of Gaussian noise (default 0.003) | |
voiced_threshold: F0 threshold for U/V classification (default 0) | |
flag_for_pulse: this SinGen is used inside PulseGen (default False) | |
Note: when flag_for_pulse is True, the first time step of a voiced | |
segment is always sin(np.pi) or cos(0) | |
""" | |
def __init__(self, samp_rate, harmonic_num=0, | |
sine_amp=0.1, noise_std=0.003, | |
voiced_threshold=0): | |
super(SineGen, self).__init__() | |
self.sine_amp = sine_amp | |
self.noise_std = noise_std | |
self.harmonic_num = harmonic_num | |
self.dim = self.harmonic_num + 1 | |
self.sampling_rate = samp_rate | |
self.voiced_threshold = voiced_threshold | |
def _f02uv(self, f0): | |
# generate uv signal | |
uv = torch.ones_like(f0) | |
uv = uv * (f0 > self.voiced_threshold) | |
return uv | |
def _f02sine(self, f0, upp): | |
""" f0: (batchsize, length, dim) | |
where dim indicates fundamental tone and overtones | |
""" | |
rad = f0 / self.sampling_rate * torch.arange(1, upp + 1, device=f0.device) | |
rad2 = torch.fmod(rad[..., -1:].float() + 0.5, 1.0) - 0.5 | |
rad_acc = rad2.cumsum(dim=1).fmod(1.0).to(f0) | |
rad += F.pad(rad_acc[:, :-1, :], (0, 0, 1, 0)) | |
rad = rad.reshape(f0.shape[0], -1, 1) | |
rad = torch.multiply(rad, torch.arange(1, self.dim + 1, device=f0.device).reshape(1, 1, -1)) | |
rand_ini = torch.rand(1, 1, self.dim, device=f0.device) | |
rand_ini[..., 0] = 0 | |
rad += rand_ini | |
sines = torch.sin(2 * np.pi * rad) | |
return sines | |
def forward(self, f0, upp): | |
""" sine_tensor, uv = forward(f0) | |
input F0: tensor(batchsize=1, length, dim=1) | |
f0 for unvoiced steps should be 0 | |
output sine_tensor: tensor(batchsize=1, length, dim) | |
output uv: tensor(batchsize=1, length, 1) | |
""" | |
f0 = f0.unsqueeze(-1) | |
sine_waves = self._f02sine(f0, upp) * self.sine_amp | |
uv = (f0 > self.voiced_threshold).float() | |
uv = F.interpolate(uv.transpose(2, 1), scale_factor=upp, mode='nearest').transpose(2, 1) | |
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3 | |
noise = noise_amp * torch.randn_like(sine_waves) | |
sine_waves = sine_waves * uv + noise | |
return sine_waves | |
class SourceModuleHnNSF(torch.nn.Module): | |
""" SourceModule for hn-nsf | |
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1, | |
add_noise_std=0.003, voiced_threshod=0) | |
sampling_rate: sampling_rate in Hz | |
harmonic_num: number of harmonic above F0 (default: 0) | |
sine_amp: amplitude of sine source signal (default: 0.1) | |
add_noise_std: std of additive Gaussian noise (default: 0.003) | |
note that amplitude of noise in unvoiced is decided | |
by sine_amp | |
voiced_threshold: threhold to set U/V given F0 (default: 0) | |
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) | |
F0_sampled (batchsize, length, 1) | |
Sine_source (batchsize, length, 1) | |
noise_source (batchsize, length 1) | |
uv (batchsize, length, 1) | |
""" | |
def __init__(self, sampling_rate, harmonic_num=0, sine_amp=0.1, | |
add_noise_std=0.003, voiced_threshold=0): | |
super(SourceModuleHnNSF, self).__init__() | |
self.sine_amp = sine_amp | |
self.noise_std = add_noise_std | |
# to produce sine waveforms | |
self.l_sin_gen = SineGen(sampling_rate, harmonic_num, | |
sine_amp, add_noise_std, voiced_threshold) | |
# to merge source harmonics into a single excitation | |
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1) | |
self.l_tanh = torch.nn.Tanh() | |
def forward(self, x, upp): | |
sine_wavs = self.l_sin_gen(x, upp) | |
sine_merge = self.l_tanh(self.l_linear(sine_wavs)) | |
return sine_merge | |
class Generator(torch.nn.Module): | |
def __init__(self, h): | |
super(Generator, self).__init__() | |
self.h = h | |
self.num_kernels = len(h.resblock_kernel_sizes) | |
self.num_upsamples = len(h.upsample_rates) | |
self.mini_nsf = h.mini_nsf | |
if h.mini_nsf: | |
self.source_sr = h.sampling_rate / int(np.prod(h.upsample_rates[2: ])) | |
self.upp = int(np.prod(h.upsample_rates[: 2])) | |
else: | |
self.source_sr = h.sampling_rate | |
self.upp = int(np.prod(h.upsample_rates)) | |
self.m_source = SourceModuleHnNSF( | |
sampling_rate=h.sampling_rate, | |
harmonic_num=8 | |
) | |
self.noise_convs = nn.ModuleList() | |
self.conv_pre = weight_norm(Conv1d(h.num_mels, h.upsample_initial_channel, 7, 1, padding=3)) | |
self.ups = nn.ModuleList() | |
self.resblocks = nn.ModuleList() | |
resblock = ResBlock1 if h.resblock == '1' else ResBlock2 | |
ch = h.upsample_initial_channel | |
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)): | |
ch //= 2 | |
self.ups.append(weight_norm(ConvTranspose1d(2 * ch, ch, k, u, padding=(k - u) // 2))) | |
for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)): | |
self.resblocks.append(resblock(h, ch, k, d)) | |
if not h.mini_nsf: | |
if i + 1 < len(h.upsample_rates): # | |
stride_f0 = int(np.prod(h.upsample_rates[i + 1:])) | |
self.noise_convs.append(Conv1d( | |
1, ch, kernel_size=stride_f0 * 2, stride=stride_f0, padding=stride_f0 // 2)) | |
else: | |
self.noise_convs.append(Conv1d(1, ch, kernel_size=1)) | |
elif i == 1: | |
self.source_conv = Conv1d(1, ch, 1) | |
self.source_conv.apply(init_weights) | |
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3)) | |
self.ups.apply(init_weights) | |
self.conv_post.apply(init_weights) | |
def fastsinegen(self, f0): | |
n = torch.arange(1, self.upp + 1, device=f0.device) | |
s0 = f0.unsqueeze(-1) / self.source_sr | |
ds0 = F.pad(s0[:, 1:, :] - s0[:, :-1, :], (0, 0, 0, 1)) | |
rad = s0 * n + 0.5 * ds0 * n * (n - 1) / self.upp | |
rad2 = torch.fmod(rad[..., -1:].float() + 0.5, 1.0) - 0.5 | |
rad_acc = rad2.cumsum(dim=1).fmod(1.0).to(f0) | |
rad += F.pad(rad_acc[:, :-1, :], (0, 0, 1, 0)) | |
rad = rad.reshape(f0.shape[0], 1, -1) | |
sines = torch.sin(2 * np.pi * rad) | |
return sines | |
def forward(self, x, f0): | |
if self.mini_nsf: | |
har_source = self.fastsinegen(f0) | |
else: | |
har_source = self.m_source(f0, self.upp).transpose(1, 2) | |
x = self.conv_pre(x) | |
for i in range(self.num_upsamples): | |
x = F.leaky_relu(x, LRELU_SLOPE) | |
x = self.ups[i](x) | |
if not self.mini_nsf: | |
x_source = self.noise_convs[i](har_source) | |
x = x + x_source | |
elif i == 1: | |
x_source = self.source_conv(har_source) | |
x = x + x_source | |
xs = None | |
for j in range(self.num_kernels): | |
if xs is None: | |
xs = self.resblocks[i * self.num_kernels + j](x) | |
else: | |
xs += self.resblocks[i * self.num_kernels + j](x) | |
x = xs / self.num_kernels | |
x = F.leaky_relu(x) | |
x = self.conv_post(x) | |
x = torch.tanh(x) | |
return x | |
def remove_weight_norm(self): | |
# rank_zero_info('Removing weight norm...') | |
print('Removing weight norm...') | |
for l in self.ups: | |
remove_weight_norm(l) | |
for l in self.resblocks: | |
l.remove_weight_norm() | |
remove_weight_norm(self.conv_pre) | |
remove_weight_norm(self.conv_post) |