liampond
Clean deploy snapshot
c42fe7e
raw
history blame
11.7 kB
import json
import pathlib
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from lightning.pytorch.utilities.rank_zero import rank_zero_info
from torch.nn import Conv1d, ConvTranspose1d
from torch.nn.utils import weight_norm, remove_weight_norm
from .env import AttrDict
from .utils import init_weights, get_padding
LRELU_SLOPE = 0.1
def load_model(model_path: pathlib.Path):
config_file = model_path.with_name('config.json')
with open(config_file) as f:
data = f.read()
json_config = json.loads(data)
h = AttrDict(json_config)
generator = Generator(h)
cp_dict = torch.load(model_path, map_location='cpu')
generator.load_state_dict(cp_dict['generator'])
generator.eval()
generator.remove_weight_norm()
del cp_dict
return generator, h
class ResBlock1(torch.nn.Module):
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)):
super(ResBlock1, self).__init__()
self.h = h
self.convs1 = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
padding=get_padding(kernel_size, dilation[2])))
])
self.convs1.apply(init_weights)
self.convs2 = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1)))
])
self.convs2.apply(init_weights)
def forward(self, x):
for c1, c2 in zip(self.convs1, self.convs2):
xt = F.leaky_relu(x, LRELU_SLOPE)
xt = c1(xt)
xt = F.leaky_relu(xt, LRELU_SLOPE)
xt = c2(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs1:
remove_weight_norm(l)
for l in self.convs2:
remove_weight_norm(l)
class ResBlock2(torch.nn.Module):
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)):
super(ResBlock2, self).__init__()
self.h = h
self.convs = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1])))
])
self.convs.apply(init_weights)
def forward(self, x):
for c in self.convs:
xt = F.leaky_relu(x, LRELU_SLOPE)
xt = c(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs:
remove_weight_norm(l)
class SineGen(torch.nn.Module):
""" Definition of sine generator
SineGen(samp_rate, harmonic_num = 0,
sine_amp = 0.1, noise_std = 0.003,
voiced_threshold = 0,
flag_for_pulse=False)
samp_rate: sampling rate in Hz
harmonic_num: number of harmonic overtones (default 0)
sine_amp: amplitude of sine-waveform (default 0.1)
noise_std: std of Gaussian noise (default 0.003)
voiced_threshold: F0 threshold for U/V classification (default 0)
flag_for_pulse: this SinGen is used inside PulseGen (default False)
Note: when flag_for_pulse is True, the first time step of a voiced
segment is always sin(np.pi) or cos(0)
"""
def __init__(self, samp_rate, harmonic_num=0,
sine_amp=0.1, noise_std=0.003,
voiced_threshold=0):
super(SineGen, self).__init__()
self.sine_amp = sine_amp
self.noise_std = noise_std
self.harmonic_num = harmonic_num
self.dim = self.harmonic_num + 1
self.sampling_rate = samp_rate
self.voiced_threshold = voiced_threshold
def _f02uv(self, f0):
# generate uv signal
uv = torch.ones_like(f0)
uv = uv * (f0 > self.voiced_threshold)
return uv
def _f02sine(self, f0, upp):
""" f0: (batchsize, length, dim)
where dim indicates fundamental tone and overtones
"""
rad = f0 / self.sampling_rate * torch.arange(1, upp + 1, device=f0.device)
rad2 = torch.fmod(rad[..., -1:].float() + 0.5, 1.0) - 0.5
rad_acc = rad2.cumsum(dim=1).fmod(1.0).to(f0)
rad += F.pad(rad_acc[:, :-1, :], (0, 0, 1, 0))
rad = rad.reshape(f0.shape[0], -1, 1)
rad = torch.multiply(rad, torch.arange(1, self.dim + 1, device=f0.device).reshape(1, 1, -1))
rand_ini = torch.rand(1, 1, self.dim, device=f0.device)
rand_ini[..., 0] = 0
rad += rand_ini
sines = torch.sin(2 * np.pi * rad)
return sines
@torch.no_grad()
def forward(self, f0, upp):
""" sine_tensor, uv = forward(f0)
input F0: tensor(batchsize=1, length, dim=1)
f0 for unvoiced steps should be 0
output sine_tensor: tensor(batchsize=1, length, dim)
output uv: tensor(batchsize=1, length, 1)
"""
f0 = f0.unsqueeze(-1)
sine_waves = self._f02sine(f0, upp) * self.sine_amp
uv = (f0 > self.voiced_threshold).float()
uv = F.interpolate(uv.transpose(2, 1), scale_factor=upp, mode='nearest').transpose(2, 1)
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
noise = noise_amp * torch.randn_like(sine_waves)
sine_waves = sine_waves * uv + noise
return sine_waves
class SourceModuleHnNSF(torch.nn.Module):
""" SourceModule for hn-nsf
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
add_noise_std=0.003, voiced_threshod=0)
sampling_rate: sampling_rate in Hz
harmonic_num: number of harmonic above F0 (default: 0)
sine_amp: amplitude of sine source signal (default: 0.1)
add_noise_std: std of additive Gaussian noise (default: 0.003)
note that amplitude of noise in unvoiced is decided
by sine_amp
voiced_threshold: threhold to set U/V given F0 (default: 0)
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
F0_sampled (batchsize, length, 1)
Sine_source (batchsize, length, 1)
noise_source (batchsize, length 1)
uv (batchsize, length, 1)
"""
def __init__(self, sampling_rate, harmonic_num=0, sine_amp=0.1,
add_noise_std=0.003, voiced_threshold=0):
super(SourceModuleHnNSF, self).__init__()
self.sine_amp = sine_amp
self.noise_std = add_noise_std
# to produce sine waveforms
self.l_sin_gen = SineGen(sampling_rate, harmonic_num,
sine_amp, add_noise_std, voiced_threshold)
# to merge source harmonics into a single excitation
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
self.l_tanh = torch.nn.Tanh()
def forward(self, x, upp):
sine_wavs = self.l_sin_gen(x, upp)
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
return sine_merge
class Generator(torch.nn.Module):
def __init__(self, h):
super(Generator, self).__init__()
self.h = h
self.num_kernels = len(h.resblock_kernel_sizes)
self.num_upsamples = len(h.upsample_rates)
self.mini_nsf = h.mini_nsf
if h.mini_nsf:
self.source_sr = h.sampling_rate / int(np.prod(h.upsample_rates[2: ]))
self.upp = int(np.prod(h.upsample_rates[: 2]))
else:
self.source_sr = h.sampling_rate
self.upp = int(np.prod(h.upsample_rates))
self.m_source = SourceModuleHnNSF(
sampling_rate=h.sampling_rate,
harmonic_num=8
)
self.noise_convs = nn.ModuleList()
self.conv_pre = weight_norm(Conv1d(h.num_mels, h.upsample_initial_channel, 7, 1, padding=3))
self.ups = nn.ModuleList()
self.resblocks = nn.ModuleList()
resblock = ResBlock1 if h.resblock == '1' else ResBlock2
ch = h.upsample_initial_channel
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
ch //= 2
self.ups.append(weight_norm(ConvTranspose1d(2 * ch, ch, k, u, padding=(k - u) // 2)))
for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)):
self.resblocks.append(resblock(h, ch, k, d))
if not h.mini_nsf:
if i + 1 < len(h.upsample_rates): #
stride_f0 = int(np.prod(h.upsample_rates[i + 1:]))
self.noise_convs.append(Conv1d(
1, ch, kernel_size=stride_f0 * 2, stride=stride_f0, padding=stride_f0 // 2))
else:
self.noise_convs.append(Conv1d(1, ch, kernel_size=1))
elif i == 1:
self.source_conv = Conv1d(1, ch, 1)
self.source_conv.apply(init_weights)
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
self.ups.apply(init_weights)
self.conv_post.apply(init_weights)
def fastsinegen(self, f0):
n = torch.arange(1, self.upp + 1, device=f0.device)
s0 = f0.unsqueeze(-1) / self.source_sr
ds0 = F.pad(s0[:, 1:, :] - s0[:, :-1, :], (0, 0, 0, 1))
rad = s0 * n + 0.5 * ds0 * n * (n - 1) / self.upp
rad2 = torch.fmod(rad[..., -1:].float() + 0.5, 1.0) - 0.5
rad_acc = rad2.cumsum(dim=1).fmod(1.0).to(f0)
rad += F.pad(rad_acc[:, :-1, :], (0, 0, 1, 0))
rad = rad.reshape(f0.shape[0], 1, -1)
sines = torch.sin(2 * np.pi * rad)
return sines
def forward(self, x, f0):
if self.mini_nsf:
har_source = self.fastsinegen(f0)
else:
har_source = self.m_source(f0, self.upp).transpose(1, 2)
x = self.conv_pre(x)
for i in range(self.num_upsamples):
x = F.leaky_relu(x, LRELU_SLOPE)
x = self.ups[i](x)
if not self.mini_nsf:
x_source = self.noise_convs[i](har_source)
x = x + x_source
elif i == 1:
x_source = self.source_conv(har_source)
x = x + x_source
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i * self.num_kernels + j](x)
else:
xs += self.resblocks[i * self.num_kernels + j](x)
x = xs / self.num_kernels
x = F.leaky_relu(x)
x = self.conv_post(x)
x = torch.tanh(x)
return x
def remove_weight_norm(self):
# rank_zero_info('Removing weight norm...')
print('Removing weight norm...')
for l in self.ups:
remove_weight_norm(l)
for l in self.resblocks:
l.remove_weight_norm()
remove_weight_norm(self.conv_pre)
remove_weight_norm(self.conv_post)