liampond
Clean deploy snapshot
c42fe7e
raw
history blame
10.7 kB
import json
import os
import pathlib
import sys
from collections import OrderedDict
from pathlib import Path
import click
from typing import Tuple
root_dir = Path(__file__).resolve().parent.parent
os.environ['PYTHONPATH'] = str(root_dir)
sys.path.insert(0, str(root_dir))
def find_exp(exp):
if not (root_dir / 'checkpoints' / exp).exists():
for subdir in (root_dir / 'checkpoints').iterdir():
if not subdir.is_dir():
continue
if subdir.name.startswith(exp):
print(f'| match ckpt by prefix: {subdir.name}')
exp = subdir.name
break
else:
raise click.BadParameter(
f'There are no matching exp starting with \'{exp}\' in \'checkpoints\' folder. '
'Please specify \'--exp\' as the folder name or prefix.'
)
else:
print(f'| found ckpt by name: {exp}')
return exp
@click.group()
def main():
pass
@main.command(help='Run DiffSinger acoustic model inference')
@click.argument(
'proj', type=click.Path(
exists=True, file_okay=True, dir_okay=False, readable=True,
path_type=pathlib.Path, resolve_path=True
),
metavar='DS_FILE'
)
@click.option(
'--exp', type=str,
required=True, metavar='EXP',
callback=lambda ctx, param, value: find_exp(value),
help='Selection of model'
)
@click.option(
'--ckpt', type=click.IntRange(min=0),
required=False, metavar='STEPS',
help='Selection of checkpoint training steps'
)
@click.option(
'--spk', type=click.STRING,
required=False,
help='Speaker name or mixture of speakers'
)
@click.option(
'--out', type=click.Path(
file_okay=False, dir_okay=True, path_type=pathlib.Path
),
required=False,
help='Path of the output folder'
)
@click.option(
'--title', type=click.STRING,
required=False,
help='Title of output file'
)
@click.option(
'--num', type=click.IntRange(min=1),
required=False, default=1,
help='Number of runs'
)
@click.option(
'--key', type=click.INT,
required=False, default=0,
help='Key transition of pitch'
)
@click.option(
'--gender', type=click.FloatRange(min=-1, max=1),
required=False,
help='Formant shifting (gender control)'
)
@click.option(
'--seed', type=click.INT,
required=False, default=-1,
help='Random seed of the inference'
)
@click.option(
'--depth', type=click.FloatRange(min=0, max=1),
required=False,
help='Shallow diffusion depth'
)
@click.option(
'--steps', type=click.IntRange(min=1),
required=False,
help='Diffusion sampling steps'
)
@click.option(
'--mel', is_flag=True,
help='Save intermediate mel format instead of waveform'
)
def acoustic(
proj: pathlib.Path,
exp: str,
ckpt: int,
spk: str,
out: pathlib.Path,
title: str,
num: int,
key: int,
gender: float,
seed: int,
depth: float,
steps: int,
mel: bool
):
name = proj.stem if not title else title
if out is None:
out = proj.parent
with open(proj, 'r', encoding='utf-8') as f:
params = json.load(f)
if not isinstance(params, list):
params = [params]
if len(params) == 0:
print('The input file is empty.')
exit()
from utils.infer_utils import trans_key, parse_commandline_spk_mix
if key != 0:
params = trans_key(params, key)
key_suffix = '%+dkey' % key
if not title:
name += key_suffix
print(f'| key transition: {key:+d}')
sys.argv = [
sys.argv[0],
'--exp_name',
exp,
'--infer'
]
from utils.hparams import set_hparams, hparams
set_hparams()
# Check for vocoder path
assert mel or (root_dir / hparams['vocoder_ckpt']).exists(), \
f'Vocoder ckpt \'{hparams["vocoder_ckpt"]}\' not found. ' \
f'Please put it to the checkpoints directory to run inference.'
# For compatibility:
# migrate timesteps, K_step, K_step_infer, diff_speedup to time_scale_factor, T_start, T_start_infer, sampling_steps
if 'diff_speedup' not in hparams and 'pndm_speedup' in hparams:
hparams['diff_speedup'] = hparams['pndm_speedup']
if 'T_start' not in hparams:
hparams['T_start'] = 1 - hparams['K_step'] / hparams['timesteps']
if 'T_start_infer' not in hparams:
hparams['T_start_infer'] = 1 - hparams['K_step_infer'] / hparams['timesteps']
if 'sampling_steps' not in hparams:
if hparams['use_shallow_diffusion']:
hparams['sampling_steps'] = hparams['K_step_infer'] // hparams['diff_speedup']
else:
hparams['sampling_steps'] = hparams['timesteps'] // hparams['diff_speedup']
if 'time_scale_factor' not in hparams:
hparams['time_scale_factor'] = hparams['timesteps']
if depth is not None:
assert depth <= 1 - hparams['T_start'], (
f"Depth should not be larger than 1 - T_start ({1 - hparams['T_start']})"
)
hparams['K_step_infer'] = round(hparams['timesteps'] * depth)
hparams['T_start_infer'] = 1 - depth
if steps is not None:
if hparams['use_shallow_diffusion']:
step_size = (1 - hparams['T_start_infer']) / steps
if 'K_step_infer' in hparams:
hparams['diff_speedup'] = round(step_size * hparams['K_step_infer'])
else:
if 'timesteps' in hparams:
hparams['diff_speedup'] = round(hparams['timesteps'] / steps)
hparams['sampling_steps'] = steps
spk_mix = parse_commandline_spk_mix(spk) if hparams['use_spk_id'] and spk is not None else None
for param in params:
if gender is not None and hparams['use_key_shift_embed']:
param['gender'] = gender
if spk_mix is not None:
param['spk_mix'] = spk_mix
from inference.ds_acoustic import DiffSingerAcousticInfer
infer_ins = DiffSingerAcousticInfer(load_vocoder=not mel, ckpt_steps=ckpt)
print(f'| Model: {type(infer_ins.model)}')
try:
infer_ins.run_inference(
params, out_dir=out, title=name, num_runs=num,
spk_mix=spk_mix, seed=seed, save_mel=mel
)
except KeyboardInterrupt:
exit(-1)
@main.command(help='Run DiffSinger variance model inference')
@click.argument(
'proj', type=click.Path(
exists=True, file_okay=True, dir_okay=False, readable=True,
path_type=pathlib.Path, resolve_path=True
),
metavar='DS_FILE'
)
@click.option(
'--exp', type=str,
required=True, metavar='EXP',
callback=lambda ctx, param, value: find_exp(value),
help='Selection of model'
)
@click.option(
'--ckpt', type=click.IntRange(min=0),
required=False, metavar='STEPS',
help='Selection of checkpoint training steps'
)
@click.option(
'--predict', type=click.STRING,
multiple=True, metavar='TAGS',
help='Parameters to predict'
)
@click.option(
'--spk', type=click.STRING,
required=False,
help='Speaker name or mixture of speakers'
)
@click.option(
'--out', type=click.Path(
file_okay=False, dir_okay=True, path_type=pathlib.Path
),
required=False,
help='Path of the output folder'
)
@click.option(
'--title', type=click.STRING,
required=False,
help='Title of output file'
)
@click.option(
'--num', type=click.IntRange(min=1),
required=False, default=1,
help='Number of runs'
)
@click.option(
'--key', type=click.INT,
required=False, default=0,
help='Key transition of pitch'
)
@click.option(
'--expr', type=click.FloatRange(min=0, max=1),
required=False, help='Static expressiveness control'
)
@click.option(
'--seed', type=click.INT,
required=False, default=-1,
help='Random seed of the inference'
)
@click.option(
'--steps', type=click.IntRange(min=1),
required=False,
help='Diffusion sampling steps'
)
def variance(
proj: pathlib.Path,
exp: str,
ckpt: int,
spk: str,
predict: Tuple[str],
out: pathlib.Path,
title: str,
num: int,
key: int,
expr: float,
seed: int,
steps: int
):
name = proj.stem if not title else title
if out is None:
out = proj.parent
if (not out or out.resolve() == proj.parent.resolve()) and not title:
name += '_variance'
with open(proj, 'r', encoding='utf-8') as f:
params = json.load(f)
if not isinstance(params, list):
params = [params]
params = [OrderedDict(p) for p in params]
if len(params) == 0:
print('The input file is empty.')
exit()
from utils.infer_utils import trans_key, parse_commandline_spk_mix
if key != 0:
params = trans_key(params, key)
key_suffix = '%+dkey' % key
if not title:
name += key_suffix
print(f'| key transition: {key:+d}')
sys.argv = [
sys.argv[0],
'--exp_name',
exp,
'--infer'
]
from utils.hparams import set_hparams, hparams
set_hparams()
# For compatibility:
# migrate timesteps, K_step, K_step_infer, diff_speedup to time_scale_factor, T_start, T_start_infer, sampling_steps
if 'diff_speedup' not in hparams and 'pndm_speedup' in hparams:
hparams['diff_speedup'] = hparams['pndm_speedup']
if 'sampling_steps' not in hparams:
hparams['sampling_steps'] = hparams['timesteps'] // hparams['diff_speedup']
if 'time_scale_factor' not in hparams:
hparams['time_scale_factor'] = hparams['timesteps']
if steps is not None:
if 'timesteps' in hparams:
hparams['diff_speedup'] = round(hparams['timesteps'] / steps)
hparams['sampling_steps'] = steps
spk_mix = parse_commandline_spk_mix(spk) if hparams['use_spk_id'] and spk is not None else None
for param in params:
if expr is not None:
param['expr'] = expr
if spk_mix is not None:
param['ph_spk_mix_backup'] = param.get('ph_spk_mix')
param['spk_mix_backup'] = param.get('spk_mix')
param['ph_spk_mix'] = param['spk_mix'] = spk_mix
from inference.ds_variance import DiffSingerVarianceInfer
infer_ins = DiffSingerVarianceInfer(ckpt_steps=ckpt, predictions=set(predict))
print(f'| Model: {type(infer_ins.model)}')
try:
infer_ins.run_inference(
params, out_dir=out, title=name,
num_runs=num, seed=seed
)
except KeyboardInterrupt:
exit(-1)
if __name__ == '__main__':
main()