File size: 4,499 Bytes
c42fe7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import matplotlib.pyplot as plt
import numpy as np
import torch
from matplotlib.ticker import MultipleLocator


def spec_to_figure(spec, vmin=None, vmax=None, title=None):
    if isinstance(spec, torch.Tensor):
        spec = spec.cpu().numpy()
    fig = plt.figure(figsize=(12, 9))
    plt.pcolor(spec.T, vmin=vmin, vmax=vmax)
    if title is not None:
        plt.title(title, fontsize=15)
    plt.tight_layout()
    return fig


def dur_to_figure(dur_gt, dur_pred, txt, title=None):
    if isinstance(dur_gt, torch.Tensor):
        dur_gt = dur_gt.cpu().numpy()
    if isinstance(dur_pred, torch.Tensor):
        dur_pred = dur_pred.cpu().numpy()
    dur_gt = dur_gt.astype(np.int64)
    dur_pred = dur_pred.astype(np.int64)
    dur_gt = np.cumsum(dur_gt)
    dur_pred = np.cumsum(dur_pred)
    width = max(12, min(48, len(txt) // 2))
    fig = plt.figure(figsize=(width, 8))
    plt.vlines(dur_pred, 12, 22, colors='r', label='pred')
    plt.vlines(dur_gt, 0, 10, colors='b', label='gt')
    for i in range(len(txt)):
        shift = (i % 8) + 1
        plt.text((dur_pred[i-1] + dur_pred[i]) / 2 if i > 0 else dur_pred[i] / 2, 12 + shift, txt[i],
                 size=16, horizontalalignment='center')
        plt.text((dur_gt[i-1] + dur_gt[i]) / 2 if i > 0 else dur_gt[i] / 2, shift, txt[i],
                 size=16, horizontalalignment='center')
        plt.plot([dur_pred[i], dur_gt[i]], [12, 10], color='black', linewidth=2, linestyle=':')
    plt.yticks([])
    plt.xlim(0, max(dur_pred[-1], dur_gt[-1]))
    plt.legend()
    if title is not None:
        plt.title(title, fontsize=15)
    plt.tight_layout()
    return fig


def pitch_note_to_figure(pitch_gt, pitch_pred=None, note_midi=None, note_dur=None, note_rest=None, title=None):
    if isinstance(pitch_gt, torch.Tensor):
        pitch_gt = pitch_gt.cpu().numpy()
    if isinstance(pitch_pred, torch.Tensor):
        pitch_pred = pitch_pred.cpu().numpy()
    if isinstance(note_midi, torch.Tensor):
        note_midi = note_midi.cpu().numpy()
    if isinstance(note_dur, torch.Tensor):
        note_dur = note_dur.cpu().numpy()
    if isinstance(note_rest, torch.Tensor):
        note_rest = note_rest.cpu().numpy()
    fig = plt.figure()
    if note_midi is not None and note_dur is not None:
        note_dur_acc = np.cumsum(note_dur)
        if note_rest is None:
            note_rest = np.zeros_like(note_midi, dtype=np.bool_)
        for i in range(len(note_midi)):
            # if note_rest[i]:
            #     continue
            plt.gca().add_patch(
                plt.Rectangle(
                    xy=(note_dur_acc[i-1] if i > 0 else 0, note_midi[i] - 0.5),
                    width=note_dur[i], height=1,
                    edgecolor='grey', fill=False,
                    linewidth=1.5, linestyle='--' if note_rest[i] else '-'
                )
            )
    plt.plot(pitch_gt, color='b', label='gt')
    if pitch_pred is not None:
        plt.plot(pitch_pred, color='r', label='pred')
    plt.gca().yaxis.set_major_locator(MultipleLocator(1))
    plt.grid(axis='y')
    plt.legend()
    if title is not None:
        plt.title(title, fontsize=15)
    plt.tight_layout()
    return fig


def curve_to_figure(curve_gt, curve_pred=None, curve_base=None, grid=None, title=None):
    if isinstance(curve_gt, torch.Tensor):
        curve_gt = curve_gt.cpu().numpy()
    if isinstance(curve_pred, torch.Tensor):
        curve_pred = curve_pred.cpu().numpy()
    if isinstance(curve_base, torch.Tensor):
        curve_base = curve_base.cpu().numpy()
    fig = plt.figure()
    if curve_base is not None:
        plt.plot(curve_base, color='g', label='base')
    plt.plot(curve_gt, color='b', label='gt')
    if curve_pred is not None:
        plt.plot(curve_pred, color='r', label='pred')
    if grid is not None:
        plt.gca().yaxis.set_major_locator(MultipleLocator(grid))
    plt.grid(axis='y')
    plt.legend()
    if title is not None:
        plt.title(title, fontsize=15)
    plt.tight_layout()
    return fig


def distribution_to_figure(title, x_label, y_label, items: list, values: list, zoom=0.8):
    fig = plt.figure(figsize=(int(len(items) * zoom), 10))
    plt.bar(x=items, height=values)
    plt.tick_params(labelsize=15)
    plt.xlim(-1, len(items))
    for a, b in zip(items, values):
        plt.text(a, b, b, ha='center', va='bottom', fontsize=15)
    plt.grid()
    plt.title(title, fontsize=30)
    plt.xlabel(x_label, fontsize=20)
    plt.ylabel(y_label, fontsize=20)
    return fig