File size: 11,783 Bytes
c42fe7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
from __future__ import annotations

import pathlib
import re
import time
import types
from collections import OrderedDict

import numpy as np
import torch
import torch.nn.functional as F

from basics.base_module import CategorizedModule
from utils.hparams import hparams
from utils.training_utils import get_latest_checkpoint_path


def tensors_to_scalars(metrics):
    new_metrics = {}
    for k, v in metrics.items():
        if isinstance(v, torch.Tensor):
            v = v.item()
        if type(v) is dict:
            v = tensors_to_scalars(v)
        new_metrics[k] = v
    return new_metrics


def collate_nd(values, pad_value=0, max_len=None):
    """
    Pad a list of Nd tensors on their first dimension and stack them into a (N+1)d tensor.
    """
    size = ((max(v.size(0) for v in values) if max_len is None else max_len), *values[0].shape[1:])
    res = torch.full((len(values), *size), fill_value=pad_value, dtype=values[0].dtype, device=values[0].device)

    for i, v in enumerate(values):
        res[i, :len(v), ...] = v
    return res


def random_continuous_masks(*shape: int, dim: int, device: str | torch.device = 'cpu'):
    start, end = torch.sort(
        torch.randint(
            low=0, high=shape[dim] + 1, size=(*shape[:dim], 2, *((1,) * (len(shape) - dim - 1))), device=device
        ).expand(*((-1,) * (dim + 1)), *shape[dim + 1:]), dim=dim
    )[0].split(1, dim=dim)
    idx = torch.arange(
        0, shape[dim], dtype=torch.long, device=device
    ).reshape(*((1,) * dim), shape[dim], *((1,) * (len(shape) - dim - 1)))
    masks = (idx >= start) & (idx < end)
    return masks


def _is_batch_full(batch, num_frames, max_batch_frames, max_batch_size):
    if len(batch) == 0:
        return 0
    if len(batch) == max_batch_size:
        return 1
    if num_frames > max_batch_frames:
        return 1
    return 0


def batch_by_size(
        indices, num_frames_fn, max_batch_frames=80000, max_batch_size=48,
        required_batch_size_multiple=1
):
    """
    Yield mini-batches of indices bucketed by size. Batches may contain
    sequences of different lengths.

    Args:
        indices (List[int]): ordered list of dataset indices
        num_frames_fn (callable): function that returns the number of frames at
            a given index
        max_batch_frames (int, optional): max number of frames in each batch
            (default: 80000).
        max_batch_size (int, optional): max number of sentences in each
            batch (default: 48).
        required_batch_size_multiple: require the batch size to be multiple
            of a given number
    """
    bsz_mult = required_batch_size_multiple

    if isinstance(indices, types.GeneratorType):
        indices = np.fromiter(indices, dtype=np.int64, count=-1)

    sample_len = 0
    sample_lens = []
    batch = []
    batches = []
    for i in range(len(indices)):
        idx = indices[i]
        num_frames = num_frames_fn(idx)
        sample_lens.append(num_frames)
        sample_len = max(sample_len, num_frames)
        assert sample_len <= max_batch_frames, (
            "sentence at index {} of size {} exceeds max_batch_samples "
            "limit of {}!".format(idx, sample_len, max_batch_frames)
        )
        num_frames = (len(batch) + 1) * sample_len

        if _is_batch_full(batch, num_frames, max_batch_frames, max_batch_size):
            mod_len = max(
                bsz_mult * (len(batch) // bsz_mult),
                len(batch) % bsz_mult,
            )
            batches.append(batch[:mod_len])
            batch = batch[mod_len:]
            sample_lens = sample_lens[mod_len:]
            sample_len = max(sample_lens) if len(sample_lens) > 0 else 0
        batch.append(idx)
    if len(batch) > 0:
        batches.append(batch)
    return batches


def make_positions(tensor, padding_idx):
    """Replace non-padding symbols with their position numbers.

    Position numbers begin at padding_idx+1. Padding symbols are ignored.
    """
    # The series of casts and type-conversions here are carefully
    # balanced to both work with ONNX export and XLA. In particular XLA
    # prefers ints, cumsum defaults to output longs, and ONNX doesn't know
    # how to handle the dtype kwarg in cumsum.
    mask = tensor.ne(padding_idx).int()
    return (torch.cumsum(mask, dim=1).type_as(mask) * mask).long() + padding_idx


def softmax(x, dim):
    return F.softmax(x, dim=dim, dtype=torch.float32)


def unpack_dict_to_list(samples):
    samples_ = []
    bsz = samples.get('outputs').size(0)
    for i in range(bsz):
        res = {}
        for k, v in samples.items():
            try:
                res[k] = v[i]
            except:
                pass
        samples_.append(res)
    return samples_


def filter_kwargs(dict_to_filter, kwarg_obj):
    import inspect

    sig = inspect.signature(kwarg_obj)
    if any(param.kind == param.VAR_KEYWORD for param in sig.parameters.values()):
        # the signature contains definitions like **kwargs, so there is no need to filter
        return dict_to_filter.copy()
    filter_keys = [
        param.name
        for param in sig.parameters.values()
        if param.kind == param.POSITIONAL_OR_KEYWORD or param.kind == param.KEYWORD_ONLY
    ]
    filtered_dict = {filter_key: dict_to_filter[filter_key] for filter_key in filter_keys if
                     filter_key in dict_to_filter}
    return filtered_dict


def load_ckpt(
        cur_model, ckpt_base_dir, ckpt_steps=None,
        prefix_in_ckpt='model', ignored_prefixes=None, key_in_ckpt='state_dict',
        strict=True, device='cpu'
):
    if ignored_prefixes is None:
        # NOTICE: this is for compatibility with old checkpoints which have duplicate txt_embed layer in them.
        ignored_prefixes = ['model.fs2.encoder.embed_tokens']
    if not isinstance(ckpt_base_dir, pathlib.Path):
        ckpt_base_dir = pathlib.Path(ckpt_base_dir)
    if ckpt_base_dir.is_file():
        checkpoint_path = [ckpt_base_dir]
    elif ckpt_steps is not None:
        checkpoint_path = [ckpt_base_dir / f'model_ckpt_steps_{int(ckpt_steps)}.ckpt']
    else:
        base_dir = ckpt_base_dir
        checkpoint_path = sorted(
            [
                ckpt_file
                for ckpt_file in base_dir.iterdir()
                if ckpt_file.is_file() and re.fullmatch(r'model_ckpt_steps_\d+\.ckpt', ckpt_file.name)
            ],
            key=lambda x: int(re.search(r'\d+', x.name).group(0))
        )
    assert len(checkpoint_path) > 0, f'| ckpt not found in {ckpt_base_dir}.'
    checkpoint_path = checkpoint_path[-1]
    ckpt_loaded = torch.load(checkpoint_path, map_location=device)
    if isinstance(cur_model, CategorizedModule):
        cur_model.check_category(ckpt_loaded.get('category'))
    if key_in_ckpt is None:
        state_dict = ckpt_loaded
    else:
        state_dict = ckpt_loaded[key_in_ckpt]
    if prefix_in_ckpt is not None:
        state_dict = OrderedDict({
            k[len(prefix_in_ckpt) + 1:]: v
            for k, v in state_dict.items() if k.startswith(f'{prefix_in_ckpt}.')
            if all(not k.startswith(p) for p in ignored_prefixes)
        })
    if not strict:
        cur_model_state_dict = cur_model.state_dict()
        unmatched_keys = []
        for key, param in state_dict.items():
            if key in cur_model_state_dict:
                new_param = cur_model_state_dict[key]
                if new_param.shape != param.shape:
                    unmatched_keys.append(key)
                    print('| Unmatched keys: ', key, new_param.shape, param.shape)
        for key in unmatched_keys:
            del state_dict[key]
    cur_model.load_state_dict(state_dict, strict=strict)
    shown_model_name = 'state dict'
    if prefix_in_ckpt is not None:
        shown_model_name = f'\'{prefix_in_ckpt}\''
    elif key_in_ckpt is not None:
        shown_model_name = f'\'{key_in_ckpt}\''
    print(f'| load {shown_model_name} from \'{checkpoint_path}\'.')


def remove_padding(x, padding_idx=0):
    if x is None:
        return None
    assert len(x.shape) in [1, 2]
    if len(x.shape) == 2:  # [T, H]
        return x[np.abs(x).sum(-1) != padding_idx]
    elif len(x.shape) == 1:  # [T]
        return x[x != padding_idx]


class Timer:
    timer_map = {}

    def __init__(self, name, print_time=False):
        if name not in Timer.timer_map:
            Timer.timer_map[name] = 0
        self.name = name
        self.print_time = print_time

    def __enter__(self):
        self.t = time.time()

    def __exit__(self, exc_type, exc_val, exc_tb):
        Timer.timer_map[self.name] += time.time() - self.t
        if self.print_time:
            print(self.name, Timer.timer_map[self.name])


def print_arch(model, model_name='model'):
    print(f"| {model_name} Arch: ", model)
    # num_params(model, model_name=model_name)


def num_params(model, print_out=True, model_name="model"):
    parameters = filter(lambda p: p.requires_grad, model.parameters())
    parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000
    if print_out:
        print(f'| {model_name} Trainable Parameters: %.3fM' % parameters)
    return parameters


def build_object_from_class_name(cls_str, parent_cls, *args, **kwargs):
    import importlib

    pkg = ".".join(cls_str.split(".")[:-1])
    cls_name = cls_str.split(".")[-1]
    cls_type = getattr(importlib.import_module(pkg), cls_name)
    if parent_cls is not None:
        assert issubclass(cls_type, parent_cls), f'| {cls_type} is not subclass of {parent_cls}.'

    return cls_type(*args, **filter_kwargs(kwargs, cls_type))


def build_lr_scheduler_from_config(optimizer, scheduler_args):
    try:
        # PyTorch 2.0+
        from torch.optim.lr_scheduler import LRScheduler as LRScheduler
    except ImportError:
        # PyTorch 1.X
        from torch.optim.lr_scheduler import _LRScheduler as LRScheduler

    def helper(params):
        if isinstance(params, list):
            return [helper(s) for s in params]
        elif isinstance(params, dict):
            resolved = {k: helper(v) for k, v in params.items()}
            if 'cls' in resolved:
                if (
                    resolved["cls"] == "torch.optim.lr_scheduler.ChainedScheduler"
                    and scheduler_args["scheduler_cls"] == "torch.optim.lr_scheduler.SequentialLR"
                ):
                    raise ValueError(f"ChainedScheduler cannot be part of a SequentialLR.")
                resolved['optimizer'] = optimizer
                obj = build_object_from_class_name(
                    resolved['cls'],
                    LRScheduler,
                    **resolved
                )
                return obj
            return resolved
        else:
            return params

    resolved = helper(scheduler_args)
    resolved['optimizer'] = optimizer
    return build_object_from_class_name(
        scheduler_args['scheduler_cls'],
        LRScheduler,
        **resolved
    )


def simulate_lr_scheduler(optimizer_args, scheduler_args, step_count, num_param_groups=1):
    optimizer = build_object_from_class_name(
        optimizer_args['optimizer_cls'],
        torch.optim.Optimizer,
        [{'params': torch.nn.Parameter(), 'initial_lr': optimizer_args['lr']} for _ in range(num_param_groups)],
        **optimizer_args
    )
    scheduler = build_lr_scheduler_from_config(optimizer, scheduler_args)
    scheduler.optimizer._step_count = 1
    for _ in range(step_count):
        scheduler.step()
    return scheduler.state_dict()


def remove_suffix(string: str, suffix: str):
    #  Just for Python 3.8 compatibility, since `str.removesuffix()` API of is available since Python 3.9
    if string.endswith(suffix):
        string = string[:-len(suffix)]
    return string