Spaces:
Sleeping
Sleeping
File size: 11,783 Bytes
c42fe7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
from __future__ import annotations
import pathlib
import re
import time
import types
from collections import OrderedDict
import numpy as np
import torch
import torch.nn.functional as F
from basics.base_module import CategorizedModule
from utils.hparams import hparams
from utils.training_utils import get_latest_checkpoint_path
def tensors_to_scalars(metrics):
new_metrics = {}
for k, v in metrics.items():
if isinstance(v, torch.Tensor):
v = v.item()
if type(v) is dict:
v = tensors_to_scalars(v)
new_metrics[k] = v
return new_metrics
def collate_nd(values, pad_value=0, max_len=None):
"""
Pad a list of Nd tensors on their first dimension and stack them into a (N+1)d tensor.
"""
size = ((max(v.size(0) for v in values) if max_len is None else max_len), *values[0].shape[1:])
res = torch.full((len(values), *size), fill_value=pad_value, dtype=values[0].dtype, device=values[0].device)
for i, v in enumerate(values):
res[i, :len(v), ...] = v
return res
def random_continuous_masks(*shape: int, dim: int, device: str | torch.device = 'cpu'):
start, end = torch.sort(
torch.randint(
low=0, high=shape[dim] + 1, size=(*shape[:dim], 2, *((1,) * (len(shape) - dim - 1))), device=device
).expand(*((-1,) * (dim + 1)), *shape[dim + 1:]), dim=dim
)[0].split(1, dim=dim)
idx = torch.arange(
0, shape[dim], dtype=torch.long, device=device
).reshape(*((1,) * dim), shape[dim], *((1,) * (len(shape) - dim - 1)))
masks = (idx >= start) & (idx < end)
return masks
def _is_batch_full(batch, num_frames, max_batch_frames, max_batch_size):
if len(batch) == 0:
return 0
if len(batch) == max_batch_size:
return 1
if num_frames > max_batch_frames:
return 1
return 0
def batch_by_size(
indices, num_frames_fn, max_batch_frames=80000, max_batch_size=48,
required_batch_size_multiple=1
):
"""
Yield mini-batches of indices bucketed by size. Batches may contain
sequences of different lengths.
Args:
indices (List[int]): ordered list of dataset indices
num_frames_fn (callable): function that returns the number of frames at
a given index
max_batch_frames (int, optional): max number of frames in each batch
(default: 80000).
max_batch_size (int, optional): max number of sentences in each
batch (default: 48).
required_batch_size_multiple: require the batch size to be multiple
of a given number
"""
bsz_mult = required_batch_size_multiple
if isinstance(indices, types.GeneratorType):
indices = np.fromiter(indices, dtype=np.int64, count=-1)
sample_len = 0
sample_lens = []
batch = []
batches = []
for i in range(len(indices)):
idx = indices[i]
num_frames = num_frames_fn(idx)
sample_lens.append(num_frames)
sample_len = max(sample_len, num_frames)
assert sample_len <= max_batch_frames, (
"sentence at index {} of size {} exceeds max_batch_samples "
"limit of {}!".format(idx, sample_len, max_batch_frames)
)
num_frames = (len(batch) + 1) * sample_len
if _is_batch_full(batch, num_frames, max_batch_frames, max_batch_size):
mod_len = max(
bsz_mult * (len(batch) // bsz_mult),
len(batch) % bsz_mult,
)
batches.append(batch[:mod_len])
batch = batch[mod_len:]
sample_lens = sample_lens[mod_len:]
sample_len = max(sample_lens) if len(sample_lens) > 0 else 0
batch.append(idx)
if len(batch) > 0:
batches.append(batch)
return batches
def make_positions(tensor, padding_idx):
"""Replace non-padding symbols with their position numbers.
Position numbers begin at padding_idx+1. Padding symbols are ignored.
"""
# The series of casts and type-conversions here are carefully
# balanced to both work with ONNX export and XLA. In particular XLA
# prefers ints, cumsum defaults to output longs, and ONNX doesn't know
# how to handle the dtype kwarg in cumsum.
mask = tensor.ne(padding_idx).int()
return (torch.cumsum(mask, dim=1).type_as(mask) * mask).long() + padding_idx
def softmax(x, dim):
return F.softmax(x, dim=dim, dtype=torch.float32)
def unpack_dict_to_list(samples):
samples_ = []
bsz = samples.get('outputs').size(0)
for i in range(bsz):
res = {}
for k, v in samples.items():
try:
res[k] = v[i]
except:
pass
samples_.append(res)
return samples_
def filter_kwargs(dict_to_filter, kwarg_obj):
import inspect
sig = inspect.signature(kwarg_obj)
if any(param.kind == param.VAR_KEYWORD for param in sig.parameters.values()):
# the signature contains definitions like **kwargs, so there is no need to filter
return dict_to_filter.copy()
filter_keys = [
param.name
for param in sig.parameters.values()
if param.kind == param.POSITIONAL_OR_KEYWORD or param.kind == param.KEYWORD_ONLY
]
filtered_dict = {filter_key: dict_to_filter[filter_key] for filter_key in filter_keys if
filter_key in dict_to_filter}
return filtered_dict
def load_ckpt(
cur_model, ckpt_base_dir, ckpt_steps=None,
prefix_in_ckpt='model', ignored_prefixes=None, key_in_ckpt='state_dict',
strict=True, device='cpu'
):
if ignored_prefixes is None:
# NOTICE: this is for compatibility with old checkpoints which have duplicate txt_embed layer in them.
ignored_prefixes = ['model.fs2.encoder.embed_tokens']
if not isinstance(ckpt_base_dir, pathlib.Path):
ckpt_base_dir = pathlib.Path(ckpt_base_dir)
if ckpt_base_dir.is_file():
checkpoint_path = [ckpt_base_dir]
elif ckpt_steps is not None:
checkpoint_path = [ckpt_base_dir / f'model_ckpt_steps_{int(ckpt_steps)}.ckpt']
else:
base_dir = ckpt_base_dir
checkpoint_path = sorted(
[
ckpt_file
for ckpt_file in base_dir.iterdir()
if ckpt_file.is_file() and re.fullmatch(r'model_ckpt_steps_\d+\.ckpt', ckpt_file.name)
],
key=lambda x: int(re.search(r'\d+', x.name).group(0))
)
assert len(checkpoint_path) > 0, f'| ckpt not found in {ckpt_base_dir}.'
checkpoint_path = checkpoint_path[-1]
ckpt_loaded = torch.load(checkpoint_path, map_location=device)
if isinstance(cur_model, CategorizedModule):
cur_model.check_category(ckpt_loaded.get('category'))
if key_in_ckpt is None:
state_dict = ckpt_loaded
else:
state_dict = ckpt_loaded[key_in_ckpt]
if prefix_in_ckpt is not None:
state_dict = OrderedDict({
k[len(prefix_in_ckpt) + 1:]: v
for k, v in state_dict.items() if k.startswith(f'{prefix_in_ckpt}.')
if all(not k.startswith(p) for p in ignored_prefixes)
})
if not strict:
cur_model_state_dict = cur_model.state_dict()
unmatched_keys = []
for key, param in state_dict.items():
if key in cur_model_state_dict:
new_param = cur_model_state_dict[key]
if new_param.shape != param.shape:
unmatched_keys.append(key)
print('| Unmatched keys: ', key, new_param.shape, param.shape)
for key in unmatched_keys:
del state_dict[key]
cur_model.load_state_dict(state_dict, strict=strict)
shown_model_name = 'state dict'
if prefix_in_ckpt is not None:
shown_model_name = f'\'{prefix_in_ckpt}\''
elif key_in_ckpt is not None:
shown_model_name = f'\'{key_in_ckpt}\''
print(f'| load {shown_model_name} from \'{checkpoint_path}\'.')
def remove_padding(x, padding_idx=0):
if x is None:
return None
assert len(x.shape) in [1, 2]
if len(x.shape) == 2: # [T, H]
return x[np.abs(x).sum(-1) != padding_idx]
elif len(x.shape) == 1: # [T]
return x[x != padding_idx]
class Timer:
timer_map = {}
def __init__(self, name, print_time=False):
if name not in Timer.timer_map:
Timer.timer_map[name] = 0
self.name = name
self.print_time = print_time
def __enter__(self):
self.t = time.time()
def __exit__(self, exc_type, exc_val, exc_tb):
Timer.timer_map[self.name] += time.time() - self.t
if self.print_time:
print(self.name, Timer.timer_map[self.name])
def print_arch(model, model_name='model'):
print(f"| {model_name} Arch: ", model)
# num_params(model, model_name=model_name)
def num_params(model, print_out=True, model_name="model"):
parameters = filter(lambda p: p.requires_grad, model.parameters())
parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000
if print_out:
print(f'| {model_name} Trainable Parameters: %.3fM' % parameters)
return parameters
def build_object_from_class_name(cls_str, parent_cls, *args, **kwargs):
import importlib
pkg = ".".join(cls_str.split(".")[:-1])
cls_name = cls_str.split(".")[-1]
cls_type = getattr(importlib.import_module(pkg), cls_name)
if parent_cls is not None:
assert issubclass(cls_type, parent_cls), f'| {cls_type} is not subclass of {parent_cls}.'
return cls_type(*args, **filter_kwargs(kwargs, cls_type))
def build_lr_scheduler_from_config(optimizer, scheduler_args):
try:
# PyTorch 2.0+
from torch.optim.lr_scheduler import LRScheduler as LRScheduler
except ImportError:
# PyTorch 1.X
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler
def helper(params):
if isinstance(params, list):
return [helper(s) for s in params]
elif isinstance(params, dict):
resolved = {k: helper(v) for k, v in params.items()}
if 'cls' in resolved:
if (
resolved["cls"] == "torch.optim.lr_scheduler.ChainedScheduler"
and scheduler_args["scheduler_cls"] == "torch.optim.lr_scheduler.SequentialLR"
):
raise ValueError(f"ChainedScheduler cannot be part of a SequentialLR.")
resolved['optimizer'] = optimizer
obj = build_object_from_class_name(
resolved['cls'],
LRScheduler,
**resolved
)
return obj
return resolved
else:
return params
resolved = helper(scheduler_args)
resolved['optimizer'] = optimizer
return build_object_from_class_name(
scheduler_args['scheduler_cls'],
LRScheduler,
**resolved
)
def simulate_lr_scheduler(optimizer_args, scheduler_args, step_count, num_param_groups=1):
optimizer = build_object_from_class_name(
optimizer_args['optimizer_cls'],
torch.optim.Optimizer,
[{'params': torch.nn.Parameter(), 'initial_lr': optimizer_args['lr']} for _ in range(num_param_groups)],
**optimizer_args
)
scheduler = build_lr_scheduler_from_config(optimizer, scheduler_args)
scheduler.optimizer._step_count = 1
for _ in range(step_count):
scheduler.step()
return scheduler.state_dict()
def remove_suffix(string: str, suffix: str):
# Just for Python 3.8 compatibility, since `str.removesuffix()` API of is available since Python 3.9
if string.endswith(suffix):
string = string[:-len(suffix)]
return string
|