File size: 22,860 Bytes
c42fe7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
import csv
import json
import os
import pathlib

import librosa
import numpy as np
import torch
import torch.nn.functional as F
from scipy import interpolate

from basics.base_binarizer import BaseBinarizer, BinarizationError
from basics.base_pe import BasePE
from modules.fastspeech.tts_modules import LengthRegulator
from modules.pe import initialize_pe
from utils.binarizer_utils import (
    SinusoidalSmoothingConv1d,
    get_mel2ph_torch,
    get_energy_librosa,
    get_breathiness,
    get_voicing,
    get_tension_base_harmonic,
)
from utils.decomposed_waveform import DecomposedWaveform
from utils.hparams import hparams
from utils.infer_utils import resample_align_curve
from utils.pitch_utils import interp_f0
from utils.plot import distribution_to_figure

os.environ["OMP_NUM_THREADS"] = "1"
VARIANCE_ITEM_ATTRIBUTES = [
    'spk_id',  # index number of dataset/speaker, int64
    'tokens',  # index numbers of phonemes, int64[T_ph,]
    'ph_dur',  # durations of phonemes, in number of frames, int64[T_ph,]
    'midi',  # phoneme-level mean MIDI pitch, int64[T_ph,]
    'ph2word',  # similar to mel2ph format, representing number of phones within each note, int64[T_ph,]
    'mel2ph',  # mel2ph format representing number of frames within each phone, int64[T_s,]
    'note_midi',  # note-level MIDI pitch, float32[T_n,]
    'note_rest',  # flags for rest notes, bool[T_n,]
    'note_dur',  # durations of notes, in number of frames, int64[T_n,]
    'note_glide',  # flags for glides, 0 = none, 1 = up, 2 = down, int64[T_n,]
    'mel2note',  # mel2ph format representing number of frames within each note, int64[T_s,]
    'base_pitch',  # interpolated and smoothed frame-level MIDI pitch, float32[T_s,]
    'pitch',  # actual pitch in semitones, float32[T_s,]
    'uv',  # unvoiced masks (only for objective evaluation metrics), bool[T_s,]
    'energy',  # frame-level RMS (dB), float32[T_s,]
    'breathiness',  # frame-level RMS of aperiodic parts (dB), float32[T_s,]
    'voicing',  # frame-level RMS of harmonic parts (dB), float32[T_s,]
    'tension',  # frame-level tension (logit), float32[T_s,]
]
DS_INDEX_SEP = '#'

# These operators are used as global variables due to a PyTorch shared memory bug on Windows platforms.
# See https://github.com/pytorch/pytorch/issues/100358
pitch_extractor: BasePE = None
midi_smooth: SinusoidalSmoothingConv1d = None
energy_smooth: SinusoidalSmoothingConv1d = None
breathiness_smooth: SinusoidalSmoothingConv1d = None
voicing_smooth: SinusoidalSmoothingConv1d = None
tension_smooth: SinusoidalSmoothingConv1d = None


class VarianceBinarizer(BaseBinarizer):
    def __init__(self):
        super().__init__(data_attrs=VARIANCE_ITEM_ATTRIBUTES)

        self.use_glide_embed = hparams['use_glide_embed']
        glide_types = hparams['glide_types']
        assert 'none' not in glide_types, 'Type name \'none\' is reserved and should not appear in glide_types.'
        self.glide_map = {
            'none': 0,
            **{
                typename: idx + 1
                for idx, typename in enumerate(glide_types)
            }
        }

        predict_energy = hparams['predict_energy']
        predict_breathiness = hparams['predict_breathiness']
        predict_voicing = hparams['predict_voicing']
        predict_tension = hparams['predict_tension']
        self.predict_variances = predict_energy or predict_breathiness or predict_voicing or predict_tension
        self.lr = LengthRegulator().to(self.device)
        self.prefer_ds = self.binarization_args['prefer_ds']
        self.cached_ds = {}

    def load_attr_from_ds(self, ds_id, name, attr, idx=0):
        item_name = f'{ds_id}:{name}'
        item_name_with_idx = f'{item_name}{DS_INDEX_SEP}{idx}'
        if item_name_with_idx in self.cached_ds:
            ds = self.cached_ds[item_name_with_idx][0]
        elif item_name in self.cached_ds:
            ds = self.cached_ds[item_name][idx]
        else:
            ds_path = self.raw_data_dirs[ds_id] / 'ds' / f'{name}{DS_INDEX_SEP}{idx}.ds'
            if ds_path.exists():
                cache_key = item_name_with_idx
            else:
                ds_path = self.raw_data_dirs[ds_id] / 'ds' / f'{name}.ds'
                cache_key = item_name
            if not ds_path.exists():
                return None
            with open(ds_path, 'r', encoding='utf8') as f:
                ds = json.load(f)
            if not isinstance(ds, list):
                ds = [ds]
            self.cached_ds[cache_key] = ds
            ds = ds[idx]
        return ds.get(attr)

    def load_meta_data(self, raw_data_dir: pathlib.Path, ds_id, spk_id):
        meta_data_dict = {}

        with open(raw_data_dir / 'transcriptions.csv', 'r', encoding='utf8') as f:
            for utterance_label in csv.DictReader(f):
                utterance_label: dict
                item_name = utterance_label['name']
                item_idx = int(item_name.rsplit(DS_INDEX_SEP, maxsplit=1)[-1]) if DS_INDEX_SEP in item_name else 0

                def require(attr, optional=False):
                    if self.prefer_ds:
                        value = self.load_attr_from_ds(ds_id, item_name, attr, item_idx)
                    else:
                        value = None
                    if value is None:
                        value = utterance_label.get(attr)
                    if value is None and not optional:
                        raise ValueError(f'Missing required attribute {attr} of item \'{item_name}\'.')
                    return value

                temp_dict = {
                    'ds_idx': item_idx,
                    'spk_id': spk_id,
                    'spk_name': self.speakers[ds_id],
                    'wav_fn': str(raw_data_dir / 'wavs' / f'{item_name}.wav'),
                    'ph_seq': require('ph_seq').split(),
                    'ph_dur': [float(x) for x in require('ph_dur').split()]
                }

                assert len(temp_dict['ph_seq']) == len(temp_dict['ph_dur']), \
                    f'Lengths of ph_seq and ph_dur mismatch in \'{item_name}\'.'
                assert all(ph_dur >= 0 for ph_dur in temp_dict['ph_dur']), \
                    f'Negative ph_dur found in \'{item_name}\'.'

                if hparams['predict_dur']:
                    temp_dict['ph_num'] = [int(x) for x in require('ph_num').split()]
                    assert len(temp_dict['ph_seq']) == sum(temp_dict['ph_num']), \
                        f'Sum of ph_num does not equal length of ph_seq in \'{item_name}\'.'

                if hparams['predict_pitch']:
                    temp_dict['note_seq'] = require('note_seq').split()
                    temp_dict['note_dur'] = [float(x) for x in require('note_dur').split()]
                    assert all(note_dur >= 0 for note_dur in temp_dict['note_dur']), \
                        f'Negative note_dur found in \'{item_name}\'.'
                    assert len(temp_dict['note_seq']) == len(temp_dict['note_dur']), \
                        f'Lengths of note_seq and note_dur mismatch in \'{item_name}\'.'
                    assert any([note != 'rest' for note in temp_dict['note_seq']]), \
                        f'All notes are rest in \'{item_name}\'.'
                    if hparams['use_glide_embed']:
                        note_glide = require('note_glide', optional=True)
                        if note_glide is None:
                            note_glide = ['none' for _ in temp_dict['note_seq']]
                        else:
                            note_glide = note_glide.split()
                            assert len(note_glide) == len(temp_dict['note_seq']), \
                                f'Lengths of note_seq and note_glide mismatch in \'{item_name}\'.'
                            assert all(g in self.glide_map for g in note_glide), \
                                f'Invalid glide type found in \'{item_name}\'.'
                        temp_dict['note_glide'] = note_glide

                meta_data_dict[f'{ds_id}:{item_name}'] = temp_dict

        self.items.update(meta_data_dict)

    def check_coverage(self):
        super().check_coverage()
        if not hparams['predict_pitch']:
            return

        # MIDI pitch distribution summary
        midi_map = {}
        for item_name in self.items:
            for midi in self.items[item_name]['note_seq']:
                if midi == 'rest':
                    continue
                midi = librosa.note_to_midi(midi, round_midi=True)
                if midi in midi_map:
                    midi_map[midi] += 1
                else:
                    midi_map[midi] = 1

        print('===== MIDI Pitch Distribution Summary =====')
        for i, key in enumerate(sorted(midi_map.keys())):
            if i == len(midi_map) - 1:
                end = '\n'
            elif i % 10 == 9:
                end = ',\n'
            else:
                end = ', '
            print(f'\'{librosa.midi_to_note(key, unicode=False)}\': {midi_map[key]}', end=end)

        # Draw graph.
        midis = sorted(midi_map.keys())
        notes = [librosa.midi_to_note(m, unicode=False) for m in range(midis[0], midis[-1] + 1)]
        plt = distribution_to_figure(
            title='MIDI Pitch Distribution Summary',
            x_label='MIDI Key', y_label='Number of occurrences',
            items=notes, values=[midi_map.get(m, 0) for m in range(midis[0], midis[-1] + 1)]
        )
        filename = self.binary_data_dir / 'midi_distribution.jpg'
        plt.savefig(fname=filename,
                    bbox_inches='tight',
                    pad_inches=0.25)
        print(f'| save summary to \'{filename}\'')

        if self.use_glide_embed:
            # Glide type distribution summary
            glide_count = {
                g: 0
                for g in self.glide_map
            }
            for item_name in self.items:
                for glide in self.items[item_name]['note_glide']:
                    if glide == 'none' or glide not in self.glide_map:
                        glide_count['none'] += 1
                    else:
                        glide_count[glide] += 1

            print('===== Glide Type Distribution Summary =====')
            for i, key in enumerate(sorted(glide_count.keys(), key=lambda k: self.glide_map[k])):
                if i == len(glide_count) - 1:
                    end = '\n'
                elif i % 10 == 9:
                    end = ',\n'
                else:
                    end = ', '
                print(f'\'{key}\': {glide_count[key]}', end=end)

            if any(n == 0 for _, n in glide_count.items()):
                raise BinarizationError(
                    f'Missing glide types in dataset: '
                    f'{sorted([g for g, n in glide_count.items() if n == 0], key=lambda k: self.glide_map[k])}'
                )

    @torch.no_grad()
    def process_item(self, item_name, meta_data, binarization_args):
        ds_id, name = item_name.split(':', maxsplit=1)
        name = name.rsplit(DS_INDEX_SEP, maxsplit=1)[0]
        ds_id = int(ds_id)
        ds_seg_idx = meta_data['ds_idx']
        seconds = sum(meta_data['ph_dur'])
        length = round(seconds / self.timestep)
        T_ph = len(meta_data['ph_seq'])
        processed_input = {
            'name': item_name,
            'wav_fn': meta_data['wav_fn'],
            'spk_id': meta_data['spk_id'],
            'spk_name': meta_data['spk_name'],
            'seconds': seconds,
            'length': length,
            'tokens': np.array(self.phone_encoder.encode(meta_data['ph_seq']), dtype=np.int64)
        }

        ph_dur_sec = torch.FloatTensor(meta_data['ph_dur']).to(self.device)
        ph_acc = torch.round(torch.cumsum(ph_dur_sec, dim=0) / self.timestep + 0.5).long()
        ph_dur = torch.diff(ph_acc, dim=0, prepend=torch.LongTensor([0]).to(self.device))
        processed_input['ph_dur'] = ph_dur.cpu().numpy()

        mel2ph = get_mel2ph_torch(
            self.lr, ph_dur_sec, length, self.timestep, device=self.device
        )

        if hparams['predict_pitch'] or self.predict_variances:
            processed_input['mel2ph'] = mel2ph.cpu().numpy()

        # Below: extract actual f0, convert to pitch and calculate delta pitch
        if pathlib.Path(meta_data['wav_fn']).exists():
            waveform, _ = librosa.load(meta_data['wav_fn'], sr=hparams['audio_sample_rate'], mono=True)
        elif not self.prefer_ds:
            raise FileNotFoundError(meta_data['wav_fn'])
        else:
            waveform = None

        global pitch_extractor
        if pitch_extractor is None:
            pitch_extractor = initialize_pe()
        f0 = uv = None
        if self.prefer_ds:
            f0_seq = self.load_attr_from_ds(ds_id, name, 'f0_seq', idx=ds_seg_idx)
            if f0_seq is not None:
                f0 = resample_align_curve(
                    np.array(f0_seq.split(), np.float32),
                    original_timestep=float(self.load_attr_from_ds(ds_id, name, 'f0_timestep', idx=ds_seg_idx)),
                    target_timestep=self.timestep,
                    align_length=length
                )
                uv = f0 == 0
                f0, _ = interp_f0(f0, uv)
        if f0 is None:
            f0, uv = pitch_extractor.get_pitch(
                waveform, samplerate=hparams['audio_sample_rate'], length=length,
                hop_size=hparams['hop_size'], f0_min=hparams['f0_min'], f0_max=hparams['f0_max'],
                interp_uv=True
            )
        if uv.all():  # All unvoiced
            print(f'Skipped \'{item_name}\': empty gt f0')
            return None
        pitch = torch.from_numpy(librosa.hz_to_midi(f0.astype(np.float32))).to(self.device)

        if hparams['predict_dur']:
            ph_num = torch.LongTensor(meta_data['ph_num']).to(self.device)
            ph2word = self.lr(ph_num[None])[0]
            processed_input['ph2word'] = ph2word.cpu().numpy()
            mel2dur = torch.gather(F.pad(ph_dur, [1, 0], value=1), 0, mel2ph)  # frame-level phone duration
            ph_midi = pitch.new_zeros(T_ph + 1).scatter_add(
                0, mel2ph, pitch / mel2dur
            )[1:]
            processed_input['midi'] = ph_midi.round().long().clamp(min=0, max=127).cpu().numpy()

        if hparams['predict_pitch']:
            # Below: get note sequence and interpolate rest notes
            note_midi = np.array(
                [(librosa.note_to_midi(n, round_midi=False) if n != 'rest' else -1) for n in meta_data['note_seq']],
                dtype=np.float32
            )
            note_rest = note_midi < 0
            interp_func = interpolate.interp1d(
                np.where(~note_rest)[0], note_midi[~note_rest],
                kind='nearest', fill_value='extrapolate'
            )
            note_midi[note_rest] = interp_func(np.where(note_rest)[0])
            processed_input['note_midi'] = note_midi
            processed_input['note_rest'] = note_rest
            note_midi = torch.from_numpy(note_midi).to(self.device)

            note_dur_sec = torch.FloatTensor(meta_data['note_dur']).to(self.device)
            note_acc = torch.round(torch.cumsum(note_dur_sec, dim=0) / self.timestep + 0.5).long()
            note_dur = torch.diff(note_acc, dim=0, prepend=torch.LongTensor([0]).to(self.device))
            processed_input['note_dur'] = note_dur.cpu().numpy()

            mel2note = get_mel2ph_torch(
                self.lr, note_dur_sec, mel2ph.shape[0], self.timestep, device=self.device
            )
            processed_input['mel2note'] = mel2note.cpu().numpy()

            # Below: get ornament attributes
            if hparams['use_glide_embed']:
                processed_input['note_glide'] = np.array([
                    self.glide_map.get(x, 0) for x in meta_data['note_glide']
                ], dtype=np.int64)

            # Below:
            # 1. Get the frame-level MIDI pitch, which is a step function curve
            # 2. smoothen the pitch step curve as the base pitch curve
            frame_midi_pitch = torch.gather(F.pad(note_midi, [1, 0], value=0), 0, mel2note)
            global midi_smooth
            if midi_smooth is None:
                midi_smooth = SinusoidalSmoothingConv1d(
                    round(hparams['midi_smooth_width'] / self.timestep)
                ).eval().to(self.device)
            smoothed_midi_pitch = midi_smooth(frame_midi_pitch[None])[0]
            processed_input['base_pitch'] = smoothed_midi_pitch.cpu().numpy()

        if hparams['predict_pitch'] or self.predict_variances:
            processed_input['pitch'] = pitch.cpu().numpy()
            processed_input['uv'] = uv

        # Below: extract energy
        if hparams['predict_energy']:
            energy = None
            energy_from_wav = False
            if self.prefer_ds:
                energy_seq = self.load_attr_from_ds(ds_id, name, 'energy', idx=ds_seg_idx)
                if energy_seq is not None:
                    energy = resample_align_curve(
                        np.array(energy_seq.split(), np.float32),
                        original_timestep=float(self.load_attr_from_ds(
                            ds_id, name, 'energy_timestep', idx=ds_seg_idx
                        )),
                        target_timestep=self.timestep,
                        align_length=length
                    )
            if energy is None:
                energy = get_energy_librosa(
                    waveform, length,
                    hop_size=hparams['hop_size'], win_size=hparams['win_size']
                ).astype(np.float32)
                energy_from_wav = True

            if energy_from_wav:
                global energy_smooth
                if energy_smooth is None:
                    energy_smooth = SinusoidalSmoothingConv1d(
                        round(hparams['energy_smooth_width'] / self.timestep)
                    ).eval().to(self.device)
                energy = energy_smooth(torch.from_numpy(energy).to(self.device)[None])[0].cpu().numpy()

            processed_input['energy'] = energy

        # create a DecomposedWaveform object for further feature extraction
        dec_waveform = DecomposedWaveform(
            waveform, samplerate=hparams['audio_sample_rate'], f0=f0 * ~uv,
            hop_size=hparams['hop_size'], fft_size=hparams['fft_size'], win_size=hparams['win_size'],
            algorithm=hparams['hnsep']
        ) if waveform is not None else None

        # Below: extract breathiness
        if hparams['predict_breathiness']:
            breathiness = None
            breathiness_from_wav = False
            if self.prefer_ds:
                breathiness_seq = self.load_attr_from_ds(ds_id, name, 'breathiness', idx=ds_seg_idx)
                if breathiness_seq is not None:
                    breathiness = resample_align_curve(
                        np.array(breathiness_seq.split(), np.float32),
                        original_timestep=float(self.load_attr_from_ds(
                            ds_id, name, 'breathiness_timestep', idx=ds_seg_idx
                        )),
                        target_timestep=self.timestep,
                        align_length=length
                    )
            if breathiness is None:
                breathiness = get_breathiness(
                    dec_waveform, None, None, length=length
                )
                breathiness_from_wav = True

            if breathiness_from_wav:
                global breathiness_smooth
                if breathiness_smooth is None:
                    breathiness_smooth = SinusoidalSmoothingConv1d(
                        round(hparams['breathiness_smooth_width'] / self.timestep)
                    ).eval().to(self.device)
                breathiness = breathiness_smooth(torch.from_numpy(breathiness).to(self.device)[None])[0].cpu().numpy()

            processed_input['breathiness'] = breathiness

        # Below: extract voicing
        if hparams['predict_voicing']:
            voicing = None
            voicing_from_wav = False
            if self.prefer_ds:
                voicing_seq = self.load_attr_from_ds(ds_id, name, 'voicing', idx=ds_seg_idx)
                if voicing_seq is not None:
                    voicing = resample_align_curve(
                        np.array(voicing_seq.split(), np.float32),
                        original_timestep=float(self.load_attr_from_ds(
                            ds_id, name, 'voicing_timestep', idx=ds_seg_idx
                        )),
                        target_timestep=self.timestep,
                        align_length=length
                    )
            if voicing is None:
                voicing = get_voicing(
                    dec_waveform, None, None, length=length
                )
                voicing_from_wav = True

            if voicing_from_wav:
                global voicing_smooth
                if voicing_smooth is None:
                    voicing_smooth = SinusoidalSmoothingConv1d(
                        round(hparams['voicing_smooth_width'] / self.timestep)
                    ).eval().to(self.device)
                voicing = voicing_smooth(torch.from_numpy(voicing).to(self.device)[None])[0].cpu().numpy()

            processed_input['voicing'] = voicing

        # Below: extract tension
        if hparams['predict_tension']:
            tension = None
            tension_from_wav = False
            if self.prefer_ds:
                tension_seq = self.load_attr_from_ds(ds_id, name, 'tension', idx=ds_seg_idx)
                if tension_seq is not None:
                    tension = resample_align_curve(
                        np.array(tension_seq.split(), np.float32),
                        original_timestep=float(self.load_attr_from_ds(
                            ds_id, name, 'tension_timestep', idx=ds_seg_idx
                        )),
                        target_timestep=self.timestep,
                        align_length=length
                    )
            if tension is None:
                tension = get_tension_base_harmonic(
                    dec_waveform, None, None, length=length, domain='logit'
                )
                tension_from_wav = True

            if tension_from_wav:
                global tension_smooth
                if tension_smooth is None:
                    tension_smooth = SinusoidalSmoothingConv1d(
                        round(hparams['tension_smooth_width'] / self.timestep)
                    ).eval().to(self.device)
                tension = tension_smooth(torch.from_numpy(tension).to(self.device)[None])[0].cpu().numpy()

            processed_input['tension'] = tension

        return processed_input

    def arrange_data_augmentation(self, data_iterator):
        return {}