Spaces:
Sleeping
Sleeping
File size: 13,798 Bytes
c42fe7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
from typing import Dict
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
import modules.compat as compat
from basics.base_module import CategorizedModule
from modules.aux_decoder import AuxDecoderAdaptor
from modules.commons.common_layers import (
XavierUniformInitLinear as Linear,
NormalInitEmbedding as Embedding
)
from modules.core import (
GaussianDiffusion, PitchDiffusion, MultiVarianceDiffusion,
RectifiedFlow, PitchRectifiedFlow, MultiVarianceRectifiedFlow
)
from modules.fastspeech.acoustic_encoder import FastSpeech2Acoustic
from modules.fastspeech.param_adaptor import ParameterAdaptorModule
from modules.fastspeech.tts_modules import RhythmRegulator, LengthRegulator
from modules.fastspeech.variance_encoder import FastSpeech2Variance, MelodyEncoder
from utils.hparams import hparams
class ShallowDiffusionOutput:
def __init__(self, *, aux_out=None, diff_out=None):
self.aux_out = aux_out
self.diff_out = diff_out
class DiffSingerAcoustic(CategorizedModule, ParameterAdaptorModule):
@property
def category(self):
return 'acoustic'
def __init__(self, vocab_size, out_dims):
CategorizedModule.__init__(self)
ParameterAdaptorModule.__init__(self)
self.fs2 = FastSpeech2Acoustic(
vocab_size=vocab_size
)
self.use_shallow_diffusion = hparams.get('use_shallow_diffusion', False)
self.shallow_args = hparams.get('shallow_diffusion_args', {})
if self.use_shallow_diffusion:
self.train_aux_decoder = self.shallow_args['train_aux_decoder']
self.train_diffusion = self.shallow_args['train_diffusion']
self.aux_decoder_grad = self.shallow_args['aux_decoder_grad']
self.aux_decoder = AuxDecoderAdaptor(
in_dims=hparams['hidden_size'], out_dims=out_dims, num_feats=1,
spec_min=hparams['spec_min'], spec_max=hparams['spec_max'],
aux_decoder_arch=self.shallow_args['aux_decoder_arch'],
aux_decoder_args=self.shallow_args['aux_decoder_args']
)
self.diffusion_type = hparams.get('diffusion_type', 'ddpm')
self.backbone_type = compat.get_backbone_type(hparams)
self.backbone_args = compat.get_backbone_args(hparams, self.backbone_type)
if self.diffusion_type == 'ddpm':
self.diffusion = GaussianDiffusion(
out_dims=out_dims,
num_feats=1,
timesteps=hparams['timesteps'],
k_step=hparams['K_step'],
backbone_type=self.backbone_type,
backbone_args=self.backbone_args,
spec_min=hparams['spec_min'],
spec_max=hparams['spec_max']
)
elif self.diffusion_type == 'reflow':
self.diffusion = RectifiedFlow(
out_dims=out_dims,
num_feats=1,
t_start=hparams['T_start'],
time_scale_factor=hparams['time_scale_factor'],
backbone_type=self.backbone_type,
backbone_args=self.backbone_args,
spec_min=hparams['spec_min'],
spec_max=hparams['spec_max']
)
else:
raise NotImplementedError(self.diffusion_type)
def forward(
self, txt_tokens, mel2ph, f0, key_shift=None, speed=None,
spk_embed_id=None, gt_mel=None, infer=True, **kwargs
) -> ShallowDiffusionOutput:
condition = self.fs2(
txt_tokens, mel2ph, f0, key_shift=key_shift, speed=speed,
spk_embed_id=spk_embed_id, **kwargs
)
if infer:
if self.use_shallow_diffusion:
aux_mel_pred = self.aux_decoder(condition, infer=True)
aux_mel_pred *= ((mel2ph > 0).float()[:, :, None])
if gt_mel is not None and self.shallow_args['val_gt_start']:
src_mel = gt_mel
else:
src_mel = aux_mel_pred
else:
aux_mel_pred = src_mel = None
mel_pred = self.diffusion(condition, src_spec=src_mel, infer=True)
mel_pred *= ((mel2ph > 0).float()[:, :, None])
return ShallowDiffusionOutput(aux_out=aux_mel_pred, diff_out=mel_pred)
else:
if self.use_shallow_diffusion:
if self.train_aux_decoder:
aux_cond = condition * self.aux_decoder_grad + condition.detach() * (1 - self.aux_decoder_grad)
aux_out = self.aux_decoder(aux_cond, infer=False)
else:
aux_out = None
if self.train_diffusion:
diff_out = self.diffusion(condition, gt_spec=gt_mel, infer=False)
else:
diff_out = None
return ShallowDiffusionOutput(aux_out=aux_out, diff_out=diff_out)
else:
aux_out = None
diff_out = self.diffusion(condition, gt_spec=gt_mel, infer=False)
return ShallowDiffusionOutput(aux_out=aux_out, diff_out=diff_out)
class DiffSingerVariance(CategorizedModule, ParameterAdaptorModule):
@property
def category(self):
return 'variance'
def __init__(self, vocab_size):
CategorizedModule.__init__(self)
ParameterAdaptorModule.__init__(self)
self.predict_dur = hparams['predict_dur']
self.predict_pitch = hparams['predict_pitch']
self.use_spk_id = hparams['use_spk_id']
if self.use_spk_id:
self.spk_embed = Embedding(hparams['num_spk'], hparams['hidden_size'])
self.fs2 = FastSpeech2Variance(
vocab_size=vocab_size
)
self.rr = RhythmRegulator()
self.lr = LengthRegulator()
self.diffusion_type = hparams.get('diffusion_type', 'ddpm')
if self.predict_pitch:
self.use_melody_encoder = hparams.get('use_melody_encoder', False)
if self.use_melody_encoder:
self.melody_encoder = MelodyEncoder(enc_hparams=hparams['melody_encoder_args'])
self.delta_pitch_embed = Linear(1, hparams['hidden_size'])
else:
self.base_pitch_embed = Linear(1, hparams['hidden_size'])
self.pitch_retake_embed = Embedding(2, hparams['hidden_size'])
pitch_hparams = hparams['pitch_prediction_args']
self.pitch_backbone_type = compat.get_backbone_type(hparams, nested_config=pitch_hparams)
self.pitch_backbone_args = compat.get_backbone_args(pitch_hparams, backbone_type=self.pitch_backbone_type)
if self.diffusion_type == 'ddpm':
self.pitch_predictor = PitchDiffusion(
vmin=pitch_hparams['pitd_norm_min'],
vmax=pitch_hparams['pitd_norm_max'],
cmin=pitch_hparams['pitd_clip_min'],
cmax=pitch_hparams['pitd_clip_max'],
repeat_bins=pitch_hparams['repeat_bins'],
timesteps=hparams['timesteps'],
k_step=hparams['K_step'],
backbone_type=self.pitch_backbone_type,
backbone_args=self.pitch_backbone_args
)
elif self.diffusion_type == 'reflow':
self.pitch_predictor = PitchRectifiedFlow(
vmin=pitch_hparams['pitd_norm_min'],
vmax=pitch_hparams['pitd_norm_max'],
cmin=pitch_hparams['pitd_clip_min'],
cmax=pitch_hparams['pitd_clip_max'],
repeat_bins=pitch_hparams['repeat_bins'],
time_scale_factor=hparams['time_scale_factor'],
backbone_type=self.pitch_backbone_type,
backbone_args=self.pitch_backbone_args
)
else:
raise ValueError(f"Invalid diffusion type: {self.diffusion_type}")
if self.predict_variances:
self.pitch_embed = Linear(1, hparams['hidden_size'])
self.variance_embeds = nn.ModuleDict({
v_name: Linear(1, hparams['hidden_size'])
for v_name in self.variance_prediction_list
})
if self.diffusion_type == 'ddpm':
self.variance_predictor = self.build_adaptor(cls=MultiVarianceDiffusion)
elif self.diffusion_type == 'reflow':
self.variance_predictor = self.build_adaptor(cls=MultiVarianceRectifiedFlow)
else:
raise NotImplementedError(self.diffusion_type)
def forward(
self, txt_tokens, midi, ph2word, ph_dur=None, word_dur=None, mel2ph=None,
note_midi=None, note_rest=None, note_dur=None, note_glide=None, mel2note=None,
base_pitch=None, pitch=None, pitch_expr=None, pitch_retake=None,
variance_retake: Dict[str, Tensor] = None,
spk_id=None, infer=True, **kwargs
):
if self.use_spk_id:
ph_spk_mix_embed = kwargs.get('ph_spk_mix_embed')
spk_mix_embed = kwargs.get('spk_mix_embed')
if ph_spk_mix_embed is not None and spk_mix_embed is not None:
ph_spk_embed = ph_spk_mix_embed
spk_embed = spk_mix_embed
else:
ph_spk_embed = spk_embed = self.spk_embed(spk_id)[:, None, :] # [B,] => [B, T=1, H]
else:
ph_spk_embed = spk_embed = None
encoder_out, dur_pred_out = self.fs2(
txt_tokens, midi=midi, ph2word=ph2word,
ph_dur=ph_dur, word_dur=word_dur,
spk_embed=ph_spk_embed, infer=infer
)
if not self.predict_pitch and not self.predict_variances:
return dur_pred_out, None, ({} if infer else None)
if mel2ph is None and word_dur is not None: # inference from file
dur_pred_align = self.rr(dur_pred_out, ph2word, word_dur)
mel2ph = self.lr(dur_pred_align)
mel2ph = F.pad(mel2ph, [0, base_pitch.shape[1] - mel2ph.shape[1]])
encoder_out = F.pad(encoder_out, [0, 0, 1, 0])
mel2ph_ = mel2ph[..., None].repeat([1, 1, hparams['hidden_size']])
condition = torch.gather(encoder_out, 1, mel2ph_)
if self.use_spk_id:
condition += spk_embed
if self.predict_pitch:
if self.use_melody_encoder:
melody_encoder_out = self.melody_encoder(
note_midi, note_rest, note_dur,
glide=note_glide
)
melody_encoder_out = F.pad(melody_encoder_out, [0, 0, 1, 0])
mel2note_ = mel2note[..., None].repeat([1, 1, hparams['hidden_size']])
melody_condition = torch.gather(melody_encoder_out, 1, mel2note_)
pitch_cond = condition + melody_condition
else:
pitch_cond = condition.clone() # preserve the original tensor to avoid further inplace operations
retake_unset = pitch_retake is None
if retake_unset:
pitch_retake = torch.ones_like(mel2ph, dtype=torch.bool)
if pitch_expr is None:
pitch_retake_embed = self.pitch_retake_embed(pitch_retake.long())
else:
retake_true_embed = self.pitch_retake_embed(
torch.ones(1, 1, dtype=torch.long, device=txt_tokens.device)
) # [B=1, T=1] => [B=1, T=1, H]
retake_false_embed = self.pitch_retake_embed(
torch.zeros(1, 1, dtype=torch.long, device=txt_tokens.device)
) # [B=1, T=1] => [B=1, T=1, H]
pitch_expr = (pitch_expr * pitch_retake)[:, :, None] # [B, T, 1]
pitch_retake_embed = pitch_expr * retake_true_embed + (1. - pitch_expr) * retake_false_embed
pitch_cond += pitch_retake_embed
if self.use_melody_encoder:
if retake_unset: # generate from scratch
delta_pitch_in = torch.zeros_like(base_pitch)
else:
delta_pitch_in = (pitch - base_pitch) * ~pitch_retake
pitch_cond += self.delta_pitch_embed(delta_pitch_in[:, :, None])
else:
if not retake_unset: # retake
base_pitch = base_pitch * pitch_retake + pitch * ~pitch_retake
pitch_cond += self.base_pitch_embed(base_pitch[:, :, None])
if infer:
pitch_pred_out = self.pitch_predictor(pitch_cond, infer=True)
else:
pitch_pred_out = self.pitch_predictor(pitch_cond, pitch - base_pitch, infer=False)
else:
pitch_pred_out = None
if not self.predict_variances:
return dur_pred_out, pitch_pred_out, ({} if infer else None)
if pitch is None:
pitch = base_pitch + pitch_pred_out
var_cond = condition + self.pitch_embed(pitch[:, :, None])
variance_inputs = self.collect_variance_inputs(**kwargs)
if variance_retake is not None:
variance_embeds = [
self.variance_embeds[v_name](v_input[:, :, None]) * ~variance_retake[v_name][:, :, None]
for v_name, v_input in zip(self.variance_prediction_list, variance_inputs)
]
var_cond += torch.stack(variance_embeds, dim=-1).sum(-1)
variance_outputs = self.variance_predictor(var_cond, variance_inputs, infer=infer)
if infer:
variances_pred_out = self.collect_variance_outputs(variance_outputs)
else:
variances_pred_out = variance_outputs
return dur_pred_out, pitch_pred_out, variances_pred_out
|