Spaces:
Sleeping
Sleeping
File size: 15,383 Bytes
c42fe7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
import copy
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from deployment.modules.diffusion import (
GaussianDiffusionONNX, PitchDiffusionONNX, MultiVarianceDiffusionONNX
)
from deployment.modules.rectified_flow import (
RectifiedFlowONNX, PitchRectifiedFlowONNX, MultiVarianceRectifiedFlowONNX
)
from deployment.modules.fastspeech2 import FastSpeech2AcousticONNX, FastSpeech2VarianceONNX
from modules.toplevel import DiffSingerAcoustic, DiffSingerVariance
from utils.hparams import hparams
class DiffSingerAcousticONNX(DiffSingerAcoustic):
def __init__(self, vocab_size, out_dims):
super().__init__(vocab_size, out_dims)
del self.fs2
del self.diffusion
self.fs2 = FastSpeech2AcousticONNX(
vocab_size=vocab_size
)
if self.diffusion_type == 'ddpm':
self.diffusion = GaussianDiffusionONNX(
out_dims=out_dims,
num_feats=1,
timesteps=hparams['timesteps'],
k_step=hparams['K_step'],
backbone_type=self.backbone_type,
backbone_args=self.backbone_args,
spec_min=hparams['spec_min'],
spec_max=hparams['spec_max']
)
elif self.diffusion_type == 'reflow':
self.diffusion = RectifiedFlowONNX(
out_dims=out_dims,
num_feats=1,
t_start=hparams['T_start'],
time_scale_factor=hparams['time_scale_factor'],
backbone_type=self.backbone_type,
backbone_args=self.backbone_args,
spec_min=hparams['spec_min'],
spec_max=hparams['spec_max']
)
else:
raise ValueError(f"Invalid diffusion type: {self.diffusion_type}")
self.mel_base = hparams.get('mel_base', '10')
def ensure_mel_base(self, mel):
if self.mel_base != 'e':
# log10 mel to log mel
mel = mel * 2.30259
return mel
def forward_fs2_aux(
self,
tokens: Tensor,
durations: Tensor,
f0: Tensor,
variances: dict,
gender: Tensor = None,
velocity: Tensor = None,
spk_embed: Tensor = None
):
condition = self.fs2(
tokens, durations, f0, variances=variances,
gender=gender, velocity=velocity, spk_embed=spk_embed
)
if self.use_shallow_diffusion:
aux_mel_pred = self.aux_decoder(condition, infer=True)
return condition, aux_mel_pred
else:
return condition
def forward_shallow_diffusion(
self, condition: Tensor, x_start: Tensor,
depth, steps: int
) -> Tensor:
mel_pred = self.diffusion(condition, x_start=x_start, depth=depth, steps=steps)
return self.ensure_mel_base(mel_pred)
def forward_diffusion(self, condition: Tensor, steps: int):
mel_pred = self.diffusion(condition, steps=steps)
return self.ensure_mel_base(mel_pred)
def forward_shallow_reflow(
self, condition: Tensor, x_end: Tensor,
depth, steps: int
):
mel_pred = self.diffusion(condition, x_end=x_end, depth=depth, steps=steps)
return self.ensure_mel_base(mel_pred)
def forward_reflow(self, condition: Tensor, steps: int):
mel_pred = self.diffusion(condition, steps=steps)
return self.ensure_mel_base(mel_pred)
def view_as_fs2_aux(self) -> nn.Module:
model = copy.deepcopy(self)
del model.diffusion
model.forward = model.forward_fs2_aux
return model
def view_as_diffusion(self) -> nn.Module:
model = copy.deepcopy(self)
del model.fs2
if self.use_shallow_diffusion:
del model.aux_decoder
model.forward = model.forward_shallow_diffusion
else:
model.forward = model.forward_diffusion
return model
def view_as_reflow(self) -> nn.Module:
model = copy.deepcopy(self)
del model.fs2
if self.use_shallow_diffusion:
del model.aux_decoder
model.forward = model.forward_shallow_reflow
else:
model.forward = model.forward_reflow
return model
class DiffSingerVarianceONNX(DiffSingerVariance):
def __init__(self, vocab_size):
super().__init__(vocab_size=vocab_size)
del self.fs2
self.fs2 = FastSpeech2VarianceONNX(
vocab_size=vocab_size
)
self.hidden_size = hparams['hidden_size']
if self.predict_pitch:
del self.pitch_predictor
self.smooth: nn.Conv1d = None
pitch_hparams = hparams['pitch_prediction_args']
if self.diffusion_type == 'ddpm':
self.pitch_predictor = PitchDiffusionONNX(
vmin=pitch_hparams['pitd_norm_min'],
vmax=pitch_hparams['pitd_norm_max'],
cmin=pitch_hparams['pitd_clip_min'],
cmax=pitch_hparams['pitd_clip_max'],
repeat_bins=pitch_hparams['repeat_bins'],
timesteps=hparams['timesteps'],
k_step=hparams['K_step'],
backbone_type=self.pitch_backbone_type,
backbone_args=self.pitch_backbone_args
)
elif self.diffusion_type == 'reflow':
self.pitch_predictor = PitchRectifiedFlowONNX(
vmin=pitch_hparams['pitd_norm_min'],
vmax=pitch_hparams['pitd_norm_max'],
cmin=pitch_hparams['pitd_clip_min'],
cmax=pitch_hparams['pitd_clip_max'],
repeat_bins=pitch_hparams['repeat_bins'],
time_scale_factor=hparams['time_scale_factor'],
backbone_type=self.pitch_backbone_type,
backbone_args=self.pitch_backbone_args
)
else:
raise ValueError(f"Invalid diffusion type: {self.diffusion_type}")
if self.predict_variances:
del self.variance_predictor
if self.diffusion_type == 'ddpm':
self.variance_predictor = self.build_adaptor(cls=MultiVarianceDiffusionONNX)
elif self.diffusion_type == 'reflow':
self.variance_predictor = self.build_adaptor(cls=MultiVarianceRectifiedFlowONNX)
else:
raise NotImplementedError(self.diffusion_type)
def build_smooth_op(self, device):
smooth_kernel_size = round(hparams['midi_smooth_width'] * hparams['audio_sample_rate'] / hparams['hop_size'])
smooth = nn.Conv1d(
in_channels=1,
out_channels=1,
kernel_size=smooth_kernel_size,
bias=False,
padding='same',
padding_mode='replicate'
).eval()
smooth_kernel = torch.sin(torch.from_numpy(
np.linspace(0, 1, smooth_kernel_size).astype(np.float32) * np.pi
))
smooth_kernel /= smooth_kernel.sum()
smooth.weight.data = smooth_kernel[None, None]
self.smooth = smooth.to(device)
def embed_frozen_spk(self, encoder_out):
if hparams['use_spk_id'] and hasattr(self, 'frozen_spk_embed'):
encoder_out += self.frozen_spk_embed
return encoder_out
def forward_linguistic_encoder_word(self, tokens, word_div, word_dur):
encoder_out, x_masks = self.fs2.forward_encoder_word(tokens, word_div, word_dur)
encoder_out = self.embed_frozen_spk(encoder_out)
return encoder_out, x_masks
def forward_linguistic_encoder_phoneme(self, tokens, ph_dur):
encoder_out, x_masks = self.fs2.forward_encoder_phoneme(tokens, ph_dur)
encoder_out = self.embed_frozen_spk(encoder_out)
return encoder_out, x_masks
def forward_dur_predictor(self, encoder_out, x_masks, ph_midi, spk_embed=None):
return self.fs2.forward_dur_predictor(encoder_out, x_masks, ph_midi, spk_embed=spk_embed)
def forward_mel2x_gather(self, x_src, x_dur, x_dim=None):
mel2x = self.lr(x_dur)
if x_dim is not None:
x_src = F.pad(x_src, [0, 0, 1, 0])
mel2x = mel2x[..., None].repeat([1, 1, x_dim])
else:
x_src = F.pad(x_src, [1, 0])
x_cond = torch.gather(x_src, 1, mel2x)
return x_cond
def forward_pitch_preprocess(
self, encoder_out, ph_dur,
note_midi=None, note_rest=None, note_dur=None, note_glide=None,
pitch=None, expr=None, retake=None, spk_embed=None
):
condition = self.forward_mel2x_gather(encoder_out, ph_dur, x_dim=self.hidden_size)
if self.use_melody_encoder:
if self.melody_encoder.use_glide_embed and note_glide is None:
note_glide = torch.LongTensor([[0]]).to(encoder_out.device)
melody_encoder_out = self.melody_encoder(
note_midi, note_rest, note_dur,
glide=note_glide
)
melody_encoder_out = self.forward_mel2x_gather(melody_encoder_out, note_dur, x_dim=self.hidden_size)
condition += melody_encoder_out
if expr is None:
retake_embed = self.pitch_retake_embed(retake.long())
else:
retake_true_embed = self.pitch_retake_embed(
torch.ones(1, 1, dtype=torch.long, device=encoder_out.device)
) # [B=1, T=1] => [B=1, T=1, H]
retake_false_embed = self.pitch_retake_embed(
torch.zeros(1, 1, dtype=torch.long, device=encoder_out.device)
) # [B=1, T=1] => [B=1, T=1, H]
expr = (expr * retake)[:, :, None] # [B, T, 1]
retake_embed = expr * retake_true_embed + (1. - expr) * retake_false_embed
pitch_cond = condition + retake_embed
frame_midi_pitch = self.forward_mel2x_gather(note_midi, note_dur, x_dim=None)
base_pitch = self.smooth(frame_midi_pitch)
if self.use_melody_encoder:
delta_pitch = (pitch - base_pitch) * ~retake
pitch_cond += self.delta_pitch_embed(delta_pitch[:, :, None])
else:
base_pitch = base_pitch * retake + pitch * ~retake
pitch_cond += self.base_pitch_embed(base_pitch[:, :, None])
if hparams['use_spk_id'] and spk_embed is not None:
pitch_cond += spk_embed
return pitch_cond, base_pitch
def forward_pitch_reflow(
self, pitch_cond, steps: int = 10
):
x_pred = self.pitch_predictor(pitch_cond, steps=steps)
return x_pred
def forward_pitch_postprocess(self, x_pred, base_pitch):
pitch_pred = self.pitch_predictor.clamp_spec(x_pred) + base_pitch
return pitch_pred
def forward_variance_preprocess(
self, encoder_out, ph_dur, pitch,
variances: dict = None, retake=None, spk_embed=None
):
condition = self.forward_mel2x_gather(encoder_out, ph_dur, x_dim=self.hidden_size)
variance_cond = condition + self.pitch_embed(pitch[:, :, None])
non_retake_masks = [
v_retake.float() # [B, T, 1]
for v_retake in (~retake).split(1, dim=2)
]
variance_embeds = [
self.variance_embeds[v_name](variances[v_name][:, :, None]) * v_masks
for v_name, v_masks in zip(self.variance_prediction_list, non_retake_masks)
]
variance_cond += torch.stack(variance_embeds, dim=-1).sum(-1)
if hparams['use_spk_id'] and spk_embed is not None:
variance_cond += spk_embed
return variance_cond
def forward_variance_reflow(self, variance_cond, steps: int = 10):
xs_pred = self.variance_predictor(variance_cond, steps=steps)
return xs_pred
def forward_variance_postprocess(self, xs_pred):
if self.variance_predictor.num_feats == 1:
xs_pred = [xs_pred]
else:
xs_pred = xs_pred.unbind(dim=1)
variance_pred = self.variance_predictor.clamp_spec(xs_pred)
return tuple(variance_pred)
def view_as_linguistic_encoder(self):
model = copy.deepcopy(self)
if self.predict_pitch:
del model.pitch_predictor
if self.use_melody_encoder:
del model.melody_encoder
if self.predict_variances:
del model.variance_predictor
model.fs2 = model.fs2.view_as_encoder()
if self.predict_dur:
model.forward = model.forward_linguistic_encoder_word
else:
model.forward = model.forward_linguistic_encoder_phoneme
return model
def view_as_dur_predictor(self):
assert self.predict_dur
model = copy.deepcopy(self)
if self.predict_pitch:
del model.pitch_predictor
if self.use_melody_encoder:
del model.melody_encoder
if self.predict_variances:
del model.variance_predictor
model.fs2 = model.fs2.view_as_dur_predictor()
model.forward = model.forward_dur_predictor
return model
def view_as_pitch_preprocess(self):
model = copy.deepcopy(self)
del model.fs2
if self.predict_pitch:
del model.pitch_predictor
if self.predict_variances:
del model.variance_predictor
model.forward = model.forward_pitch_preprocess
return model
def view_as_pitch_predictor(self):
assert self.predict_pitch
model = copy.deepcopy(self)
del model.fs2
del model.lr
if self.use_melody_encoder:
del model.melody_encoder
if self.predict_variances:
del model.variance_predictor
model.forward = model.forward_pitch_reflow
return model
def view_as_pitch_postprocess(self):
model = copy.deepcopy(self)
del model.fs2
if self.use_melody_encoder:
del model.melody_encoder
if self.predict_variances:
del model.variance_predictor
model.forward = model.forward_pitch_postprocess
return model
def view_as_variance_preprocess(self):
model = copy.deepcopy(self)
del model.fs2
if self.predict_pitch:
del model.pitch_predictor
if self.use_melody_encoder:
del model.melody_encoder
if self.predict_variances:
del model.variance_predictor
model.forward = model.forward_variance_preprocess
return model
def view_as_variance_predictor(self):
assert self.predict_variances
model = copy.deepcopy(self)
del model.fs2
del model.lr
if self.predict_pitch:
del model.pitch_predictor
if self.use_melody_encoder:
del model.melody_encoder
model.forward = model.forward_variance_reflow
return model
def view_as_variance_postprocess(self):
model = copy.deepcopy(self)
del model.fs2
if self.predict_pitch:
del model.pitch_predictor
if self.use_melody_encoder:
del model.melody_encoder
model.forward = model.forward_variance_postprocess
return model
|