File size: 15,383 Bytes
c42fe7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
import copy

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor

from deployment.modules.diffusion import (
    GaussianDiffusionONNX, PitchDiffusionONNX, MultiVarianceDiffusionONNX
)
from deployment.modules.rectified_flow import (
    RectifiedFlowONNX, PitchRectifiedFlowONNX, MultiVarianceRectifiedFlowONNX
)
from deployment.modules.fastspeech2 import FastSpeech2AcousticONNX, FastSpeech2VarianceONNX
from modules.toplevel import DiffSingerAcoustic, DiffSingerVariance
from utils.hparams import hparams


class DiffSingerAcousticONNX(DiffSingerAcoustic):
    def __init__(self, vocab_size, out_dims):
        super().__init__(vocab_size, out_dims)
        del self.fs2
        del self.diffusion
        self.fs2 = FastSpeech2AcousticONNX(
            vocab_size=vocab_size
        )
        if self.diffusion_type == 'ddpm':
            self.diffusion = GaussianDiffusionONNX(
                out_dims=out_dims,
                num_feats=1,
                timesteps=hparams['timesteps'],
                k_step=hparams['K_step'],
                backbone_type=self.backbone_type,
                backbone_args=self.backbone_args,
                spec_min=hparams['spec_min'],
                spec_max=hparams['spec_max']
            )
        elif self.diffusion_type == 'reflow':
            self.diffusion = RectifiedFlowONNX(
                out_dims=out_dims,
                num_feats=1,
                t_start=hparams['T_start'],
                time_scale_factor=hparams['time_scale_factor'],
                backbone_type=self.backbone_type,
                backbone_args=self.backbone_args,
                spec_min=hparams['spec_min'],
                spec_max=hparams['spec_max']
            )
        else:
            raise ValueError(f"Invalid diffusion type: {self.diffusion_type}")
        self.mel_base = hparams.get('mel_base', '10')

    def ensure_mel_base(self, mel):
        if self.mel_base != 'e':
            # log10 mel to log mel
            mel = mel * 2.30259
        return mel

    def forward_fs2_aux(
            self,
            tokens: Tensor,
            durations: Tensor,
            f0: Tensor,
            variances: dict,
            gender: Tensor = None,
            velocity: Tensor = None,
            spk_embed: Tensor = None
    ):
        condition = self.fs2(
            tokens, durations, f0, variances=variances,
            gender=gender, velocity=velocity, spk_embed=spk_embed
        )
        if self.use_shallow_diffusion:
            aux_mel_pred = self.aux_decoder(condition, infer=True)
            return condition, aux_mel_pred
        else:
            return condition

    def forward_shallow_diffusion(
            self, condition: Tensor, x_start: Tensor,
            depth, steps: int
    ) -> Tensor:
        mel_pred = self.diffusion(condition, x_start=x_start, depth=depth, steps=steps)
        return self.ensure_mel_base(mel_pred)

    def forward_diffusion(self, condition: Tensor, steps: int):
        mel_pred = self.diffusion(condition, steps=steps)
        return self.ensure_mel_base(mel_pred)

    def forward_shallow_reflow(
            self, condition: Tensor, x_end: Tensor,
            depth, steps: int
    ):
        mel_pred = self.diffusion(condition, x_end=x_end, depth=depth, steps=steps)
        return self.ensure_mel_base(mel_pred)

    def forward_reflow(self, condition: Tensor, steps: int):
        mel_pred = self.diffusion(condition, steps=steps)
        return self.ensure_mel_base(mel_pred)

    def view_as_fs2_aux(self) -> nn.Module:
        model = copy.deepcopy(self)
        del model.diffusion
        model.forward = model.forward_fs2_aux
        return model

    def view_as_diffusion(self) -> nn.Module:
        model = copy.deepcopy(self)
        del model.fs2
        if self.use_shallow_diffusion:
            del model.aux_decoder
            model.forward = model.forward_shallow_diffusion
        else:
            model.forward = model.forward_diffusion
        return model

    def view_as_reflow(self) -> nn.Module:
        model = copy.deepcopy(self)
        del model.fs2
        if self.use_shallow_diffusion:
            del model.aux_decoder
            model.forward = model.forward_shallow_reflow
        else:
            model.forward = model.forward_reflow
        return model


class DiffSingerVarianceONNX(DiffSingerVariance):
    def __init__(self, vocab_size):
        super().__init__(vocab_size=vocab_size)
        del self.fs2
        self.fs2 = FastSpeech2VarianceONNX(
            vocab_size=vocab_size
        )
        self.hidden_size = hparams['hidden_size']
        if self.predict_pitch:
            del self.pitch_predictor
            self.smooth: nn.Conv1d = None
            pitch_hparams = hparams['pitch_prediction_args']
            if self.diffusion_type == 'ddpm':
                self.pitch_predictor = PitchDiffusionONNX(
                    vmin=pitch_hparams['pitd_norm_min'],
                    vmax=pitch_hparams['pitd_norm_max'],
                    cmin=pitch_hparams['pitd_clip_min'],
                    cmax=pitch_hparams['pitd_clip_max'],
                    repeat_bins=pitch_hparams['repeat_bins'],
                    timesteps=hparams['timesteps'],
                    k_step=hparams['K_step'],
                    backbone_type=self.pitch_backbone_type,
                    backbone_args=self.pitch_backbone_args
                )
            elif self.diffusion_type == 'reflow':
                self.pitch_predictor = PitchRectifiedFlowONNX(
                    vmin=pitch_hparams['pitd_norm_min'],
                    vmax=pitch_hparams['pitd_norm_max'],
                    cmin=pitch_hparams['pitd_clip_min'],
                    cmax=pitch_hparams['pitd_clip_max'],
                    repeat_bins=pitch_hparams['repeat_bins'],
                    time_scale_factor=hparams['time_scale_factor'],
                    backbone_type=self.pitch_backbone_type,
                    backbone_args=self.pitch_backbone_args
                )
            else:
                raise ValueError(f"Invalid diffusion type: {self.diffusion_type}")
        if self.predict_variances:
            del self.variance_predictor
            if self.diffusion_type == 'ddpm':
                self.variance_predictor = self.build_adaptor(cls=MultiVarianceDiffusionONNX)
            elif self.diffusion_type == 'reflow':
                self.variance_predictor = self.build_adaptor(cls=MultiVarianceRectifiedFlowONNX)
            else:
                raise NotImplementedError(self.diffusion_type)

    def build_smooth_op(self, device):
        smooth_kernel_size = round(hparams['midi_smooth_width'] * hparams['audio_sample_rate'] / hparams['hop_size'])
        smooth = nn.Conv1d(
            in_channels=1,
            out_channels=1,
            kernel_size=smooth_kernel_size,
            bias=False,
            padding='same',
            padding_mode='replicate'
        ).eval()
        smooth_kernel = torch.sin(torch.from_numpy(
            np.linspace(0, 1, smooth_kernel_size).astype(np.float32) * np.pi
        ))
        smooth_kernel /= smooth_kernel.sum()
        smooth.weight.data = smooth_kernel[None, None]
        self.smooth = smooth.to(device)

    def embed_frozen_spk(self, encoder_out):
        if hparams['use_spk_id'] and hasattr(self, 'frozen_spk_embed'):
            encoder_out += self.frozen_spk_embed
        return encoder_out

    def forward_linguistic_encoder_word(self, tokens, word_div, word_dur):
        encoder_out, x_masks = self.fs2.forward_encoder_word(tokens, word_div, word_dur)
        encoder_out = self.embed_frozen_spk(encoder_out)
        return encoder_out, x_masks

    def forward_linguistic_encoder_phoneme(self, tokens, ph_dur):
        encoder_out, x_masks = self.fs2.forward_encoder_phoneme(tokens, ph_dur)
        encoder_out = self.embed_frozen_spk(encoder_out)
        return encoder_out, x_masks

    def forward_dur_predictor(self, encoder_out, x_masks, ph_midi, spk_embed=None):
        return self.fs2.forward_dur_predictor(encoder_out, x_masks, ph_midi, spk_embed=spk_embed)

    def forward_mel2x_gather(self, x_src, x_dur, x_dim=None):
        mel2x = self.lr(x_dur)
        if x_dim is not None:
            x_src = F.pad(x_src, [0, 0, 1, 0])
            mel2x = mel2x[..., None].repeat([1, 1, x_dim])
        else:
            x_src = F.pad(x_src, [1, 0])
        x_cond = torch.gather(x_src, 1, mel2x)
        return x_cond

    def forward_pitch_preprocess(
            self, encoder_out, ph_dur,
            note_midi=None, note_rest=None, note_dur=None, note_glide=None,
            pitch=None, expr=None, retake=None, spk_embed=None
    ):
        condition = self.forward_mel2x_gather(encoder_out, ph_dur, x_dim=self.hidden_size)
        if self.use_melody_encoder:
            if self.melody_encoder.use_glide_embed and note_glide is None:
                note_glide = torch.LongTensor([[0]]).to(encoder_out.device)
            melody_encoder_out = self.melody_encoder(
                note_midi, note_rest, note_dur,
                glide=note_glide
            )
            melody_encoder_out = self.forward_mel2x_gather(melody_encoder_out, note_dur, x_dim=self.hidden_size)
            condition += melody_encoder_out
        if expr is None:
            retake_embed = self.pitch_retake_embed(retake.long())
        else:
            retake_true_embed = self.pitch_retake_embed(
                torch.ones(1, 1, dtype=torch.long, device=encoder_out.device)
            )  # [B=1, T=1] => [B=1, T=1, H]
            retake_false_embed = self.pitch_retake_embed(
                torch.zeros(1, 1, dtype=torch.long, device=encoder_out.device)
            )  # [B=1, T=1] => [B=1, T=1, H]
            expr = (expr * retake)[:, :, None]  # [B, T, 1]
            retake_embed = expr * retake_true_embed + (1. - expr) * retake_false_embed
        pitch_cond = condition + retake_embed
        frame_midi_pitch = self.forward_mel2x_gather(note_midi, note_dur, x_dim=None)
        base_pitch = self.smooth(frame_midi_pitch)
        if self.use_melody_encoder:
            delta_pitch = (pitch - base_pitch) * ~retake
            pitch_cond += self.delta_pitch_embed(delta_pitch[:, :, None])
        else:
            base_pitch = base_pitch * retake + pitch * ~retake
            pitch_cond += self.base_pitch_embed(base_pitch[:, :, None])
        if hparams['use_spk_id'] and spk_embed is not None:
            pitch_cond += spk_embed
        return pitch_cond, base_pitch

    def forward_pitch_reflow(
            self, pitch_cond, steps: int = 10
    ):
        x_pred = self.pitch_predictor(pitch_cond, steps=steps)
        return x_pred

    def forward_pitch_postprocess(self, x_pred, base_pitch):
        pitch_pred = self.pitch_predictor.clamp_spec(x_pred) + base_pitch
        return pitch_pred

    def forward_variance_preprocess(
            self, encoder_out, ph_dur, pitch,
            variances: dict = None, retake=None, spk_embed=None
    ):
        condition = self.forward_mel2x_gather(encoder_out, ph_dur, x_dim=self.hidden_size)
        variance_cond = condition + self.pitch_embed(pitch[:, :, None])
        non_retake_masks = [
            v_retake.float()  # [B, T, 1]
            for v_retake in (~retake).split(1, dim=2)
        ]
        variance_embeds = [
            self.variance_embeds[v_name](variances[v_name][:, :, None]) * v_masks
            for v_name, v_masks in zip(self.variance_prediction_list, non_retake_masks)
        ]
        variance_cond += torch.stack(variance_embeds, dim=-1).sum(-1)
        if hparams['use_spk_id'] and spk_embed is not None:
            variance_cond += spk_embed
        return variance_cond

    def forward_variance_reflow(self, variance_cond, steps: int = 10):
        xs_pred = self.variance_predictor(variance_cond, steps=steps)
        return xs_pred

    def forward_variance_postprocess(self, xs_pred):
        if self.variance_predictor.num_feats == 1:
            xs_pred = [xs_pred]
        else:
            xs_pred = xs_pred.unbind(dim=1)
        variance_pred = self.variance_predictor.clamp_spec(xs_pred)
        return tuple(variance_pred)

    def view_as_linguistic_encoder(self):
        model = copy.deepcopy(self)
        if self.predict_pitch:
            del model.pitch_predictor
            if self.use_melody_encoder:
                del model.melody_encoder
        if self.predict_variances:
            del model.variance_predictor
        model.fs2 = model.fs2.view_as_encoder()
        if self.predict_dur:
            model.forward = model.forward_linguistic_encoder_word
        else:
            model.forward = model.forward_linguistic_encoder_phoneme
        return model

    def view_as_dur_predictor(self):
        assert self.predict_dur
        model = copy.deepcopy(self)
        if self.predict_pitch:
            del model.pitch_predictor
            if self.use_melody_encoder:
                del model.melody_encoder
        if self.predict_variances:
            del model.variance_predictor
        model.fs2 = model.fs2.view_as_dur_predictor()
        model.forward = model.forward_dur_predictor
        return model

    def view_as_pitch_preprocess(self):
        model = copy.deepcopy(self)
        del model.fs2
        if self.predict_pitch:
            del model.pitch_predictor
        if self.predict_variances:
            del model.variance_predictor
        model.forward = model.forward_pitch_preprocess
        return model

    def view_as_pitch_predictor(self):
        assert self.predict_pitch
        model = copy.deepcopy(self)
        del model.fs2
        del model.lr
        if self.use_melody_encoder:
            del model.melody_encoder
        if self.predict_variances:
            del model.variance_predictor
        model.forward = model.forward_pitch_reflow
        return model

    def view_as_pitch_postprocess(self):
        model = copy.deepcopy(self)
        del model.fs2
        if self.use_melody_encoder:
            del model.melody_encoder
        if self.predict_variances:
            del model.variance_predictor
        model.forward = model.forward_pitch_postprocess
        return model

    def view_as_variance_preprocess(self):
        model = copy.deepcopy(self)
        del model.fs2
        if self.predict_pitch:
            del model.pitch_predictor
            if self.use_melody_encoder:
                del model.melody_encoder
        if self.predict_variances:
            del model.variance_predictor
        model.forward = model.forward_variance_preprocess
        return model

    def view_as_variance_predictor(self):
        assert self.predict_variances
        model = copy.deepcopy(self)
        del model.fs2
        del model.lr
        if self.predict_pitch:
            del model.pitch_predictor
            if self.use_melody_encoder:
                del model.melody_encoder
        model.forward = model.forward_variance_reflow
        return model

    def view_as_variance_postprocess(self):
        model = copy.deepcopy(self)
        del model.fs2
        if self.predict_pitch:
            del model.pitch_predictor
            if self.use_melody_encoder:
                del model.melody_encoder
        model.forward = model.forward_variance_postprocess
        return model