Spaces:
Sleeping
Sleeping
File size: 20,096 Bytes
c42fe7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 |
import logging
import os
import pathlib
import shutil
import sys
from typing import Dict
import matplotlib
import utils
from utils.text_encoder import TokenTextEncoder
matplotlib.use('Agg')
import torch.utils.data
from torchmetrics import Metric, MeanMetric
import lightning.pytorch as pl
from lightning.pytorch.utilities.rank_zero import rank_zero_debug, rank_zero_info, rank_zero_only
from basics.base_module import CategorizedModule
from utils.hparams import hparams
from utils.training_utils import (
DsModelCheckpoint, DsTQDMProgressBar,
DsBatchSampler, DsTensorBoardLogger,
get_latest_checkpoint_path, get_strategy
)
from utils.phoneme_utils import locate_dictionary, build_phoneme_list
torch.multiprocessing.set_sharing_strategy(os.getenv('TORCH_SHARE_STRATEGY', 'file_system'))
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt='%m/%d %I:%M:%S %p')
class BaseTask(pl.LightningModule):
"""
Base class for training tasks.
1. *load_ckpt*:
load checkpoint;
2. *training_step*:
record and log the loss;
3. *optimizer_step*:
run backwards step;
4. *start*:
load training configs, backup code, log to tensorboard, start training;
5. *configure_ddp* and *init_ddp_connection*:
start parallel training.
Subclasses should define:
1. *build_model*, *build_optimizer*, *build_scheduler*:
how to build the model, the optimizer and the training scheduler;
2. *_training_step*:
one training step of the model;
3. *on_validation_end* and *_on_validation_end*:
postprocess the validation output.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.max_batch_frames = hparams['max_batch_frames']
self.max_batch_size = hparams['max_batch_size']
self.max_val_batch_frames = hparams['max_val_batch_frames']
if self.max_val_batch_frames == -1:
hparams['max_val_batch_frames'] = self.max_val_batch_frames = self.max_batch_frames
self.max_val_batch_size = hparams['max_val_batch_size']
if self.max_val_batch_size == -1:
hparams['max_val_batch_size'] = self.max_val_batch_size = self.max_batch_size
self.training_sampler = None
self.skip_immediate_validation = False
self.skip_immediate_ckpt_save = False
self.phone_encoder = self.build_phone_encoder()
self.build_model()
self.valid_losses: Dict[str, Metric] = {}
self.valid_metrics: Dict[str, Metric] = {}
def _finish_init(self):
self.register_validation_loss('total_loss')
self.build_losses_and_metrics()
assert len(self.valid_losses) > 0, "No validation loss registered. Please check your configuration file."
###########
# Training, validation and testing
###########
def setup(self, stage):
self.train_dataset = self.dataset_cls('train')
self.valid_dataset = self.dataset_cls('valid')
self.num_replicas = (self.trainer.distributed_sampler_kwargs or {}).get('num_replicas', 1)
def get_need_freeze_state_dict_key(self, model_state_dict) -> list:
key_list = []
for i in hparams['frozen_params']:
for j in model_state_dict:
if j.startswith(i):
key_list.append(j)
return list(set(key_list))
def freeze_params(self) -> None:
model_state_dict = self.state_dict().keys()
freeze_key = self.get_need_freeze_state_dict_key(model_state_dict=model_state_dict)
for i in freeze_key:
params=self.get_parameter(i)
params.requires_grad = False
def unfreeze_all_params(self) -> None:
for i in self.model.parameters():
i.requires_grad = True
def load_finetune_ckpt(
self, state_dict
) -> None:
adapt_shapes = hparams['finetune_strict_shapes']
if not adapt_shapes:
cur_model_state_dict = self.state_dict()
unmatched_keys = []
for key, param in state_dict.items():
if key in cur_model_state_dict:
new_param = cur_model_state_dict[key]
if new_param.shape != param.shape:
unmatched_keys.append(key)
print('| Unmatched keys: ', key, new_param.shape, param.shape)
for key in unmatched_keys:
del state_dict[key]
self.load_state_dict(state_dict, strict=False)
def load_pre_train_model(self):
pre_train_ckpt_path = hparams['finetune_ckpt_path']
blacklist = hparams['finetune_ignored_params']
# whitelist=hparams['pre_train_whitelist']
if blacklist is None:
blacklist = []
# if whitelist is None:
# raise RuntimeError("")
if pre_train_ckpt_path is not None:
ckpt = torch.load(pre_train_ckpt_path)
# if ckpt.get('category') is None:
# raise RuntimeError("")
if isinstance(self.model, CategorizedModule):
self.model.check_category(ckpt.get('category'))
state_dict = {}
for i in ckpt['state_dict']:
# if 'diffusion' in i:
# if i in rrrr:
# continue
skip = False
for b in blacklist:
if i.startswith(b):
skip = True
break
if skip:
continue
state_dict[i] = ckpt['state_dict'][i]
print(i)
return state_dict
else:
raise RuntimeError("")
@staticmethod
def build_phone_encoder():
phone_list = build_phoneme_list()
return TokenTextEncoder(vocab_list=phone_list)
def _build_model(self):
raise NotImplementedError()
def build_model(self):
self.model = self._build_model()
# utils.load_warp(self)
self.unfreeze_all_params()
if hparams['freezing_enabled']:
self.freeze_params()
if hparams['finetune_enabled'] and get_latest_checkpoint_path(pathlib.Path(hparams['work_dir'])) is None:
self.load_finetune_ckpt(self.load_pre_train_model())
self.print_arch()
@rank_zero_only
def print_arch(self):
utils.print_arch(self.model)
def build_losses_and_metrics(self):
raise NotImplementedError()
def register_validation_metric(self, name: str, metric: Metric):
assert isinstance(metric, Metric)
self.valid_metrics[name] = metric
def register_validation_loss(self, name: str, Aggregator: Metric = MeanMetric):
assert issubclass(Aggregator, Metric)
self.valid_losses[name] = Aggregator()
def run_model(self, sample, infer=False):
"""
steps:
1. run the full model
2. calculate losses if not infer
"""
raise NotImplementedError()
def on_train_epoch_start(self):
if self.training_sampler is not None:
self.training_sampler.set_epoch(self.current_epoch)
def _training_step(self, sample):
"""
:return: total loss: torch.Tensor, loss_log: dict, other_log: dict
"""
losses = self.run_model(sample)
total_loss = sum(losses.values())
return total_loss, {**losses, 'batch_size': float(sample['size'])}
def training_step(self, sample, batch_idx):
total_loss, log_outputs = self._training_step(sample)
# logs to progress bar
self.log_dict(log_outputs, prog_bar=True, logger=False, on_step=True, on_epoch=False)
self.log('lr', self.lr_schedulers().get_last_lr()[0], prog_bar=True, logger=False, on_step=True, on_epoch=False)
# logs to tensorboard
if self.global_step % hparams['log_interval'] == 0:
tb_log = {f'training/{k}': v for k, v in log_outputs.items()}
tb_log['training/lr'] = self.lr_schedulers().get_last_lr()[0]
self.logger.log_metrics(tb_log, step=self.global_step)
return total_loss
# def on_before_optimizer_step(self, *args, **kwargs):
# self.log_dict(grad_norm(self, norm_type=2))
def _on_validation_start(self):
pass
def on_validation_start(self):
if self.skip_immediate_validation:
rank_zero_debug("Skip validation")
return
self._on_validation_start()
for metric in self.valid_losses.values():
metric.to(self.device)
metric.reset()
for metric in self.valid_metrics.values():
metric.to(self.device)
metric.reset()
def _validation_step(self, sample, batch_idx):
"""
:param sample:
:param batch_idx:
:return: loss_log: dict, weight: int
"""
raise NotImplementedError()
def validation_step(self, sample, batch_idx):
"""
:param sample:
:param batch_idx:
"""
if self.skip_immediate_validation:
rank_zero_debug("Skip validation")
return
if sample['size'] > 0:
with torch.autocast(self.device.type, enabled=False):
losses, weight = self._validation_step(sample, batch_idx)
losses = {
'total_loss': sum(losses.values()),
**losses
}
for k, v in losses.items():
self.valid_losses[k].update(v, weight=weight)
def _on_validation_epoch_end(self):
pass
def on_validation_epoch_end(self):
if self.skip_immediate_validation:
self.skip_immediate_validation = False
self.skip_immediate_ckpt_save = True
return
self._on_validation_epoch_end()
loss_vals = {k: v.compute() for k, v in self.valid_losses.items()}
metric_vals = {k: v.compute() for k, v in self.valid_metrics.items()}
self.log('val_loss', loss_vals['total_loss'], on_epoch=True, prog_bar=True, logger=False, sync_dist=True)
self.logger.log_metrics({f'validation/{k}': v for k, v in loss_vals.items()}, step=self.global_step)
self.logger.log_metrics({f'metrics/{k}': v for k, v in metric_vals.items()}, step=self.global_step)
# noinspection PyMethodMayBeStatic
def build_scheduler(self, optimizer):
from utils import build_lr_scheduler_from_config
scheduler_args = hparams['lr_scheduler_args']
assert scheduler_args['scheduler_cls'] != ''
scheduler = build_lr_scheduler_from_config(optimizer, scheduler_args)
return scheduler
# noinspection PyMethodMayBeStatic
def build_optimizer(self, model):
from utils import build_object_from_class_name
optimizer_args = hparams['optimizer_args']
assert optimizer_args['optimizer_cls'] != ''
if 'beta1' in optimizer_args and 'beta2' in optimizer_args and 'betas' not in optimizer_args:
optimizer_args['betas'] = (optimizer_args['beta1'], optimizer_args['beta2'])
optimizer = build_object_from_class_name(
optimizer_args['optimizer_cls'],
torch.optim.Optimizer,
model.parameters(),
**optimizer_args
)
return optimizer
def configure_optimizers(self):
optm = self.build_optimizer(self.model)
scheduler = self.build_scheduler(optm)
if scheduler is None:
return optm
return {
"optimizer": optm,
"lr_scheduler": {
"scheduler": scheduler,
"interval": "step",
"frequency": 1
}
}
def train_dataloader(self):
self.training_sampler = DsBatchSampler(
self.train_dataset,
max_batch_frames=self.max_batch_frames,
max_batch_size=self.max_batch_size,
num_replicas=self.num_replicas,
rank=self.global_rank,
sort_by_similar_size=hparams['sort_by_len'],
size_reversed=True,
required_batch_count_multiple=hparams['accumulate_grad_batches'],
shuffle_sample=True,
shuffle_batch=True
)
return torch.utils.data.DataLoader(
self.train_dataset,
collate_fn=self.train_dataset.collater,
batch_sampler=self.training_sampler,
num_workers=hparams['ds_workers'],
prefetch_factor=hparams['dataloader_prefetch_factor'],
pin_memory=True,
persistent_workers=True
)
def val_dataloader(self):
sampler = DsBatchSampler(
self.valid_dataset,
max_batch_frames=self.max_val_batch_frames,
max_batch_size=self.max_val_batch_size,
num_replicas=self.num_replicas,
rank=self.global_rank,
shuffle_sample=False,
shuffle_batch=False,
disallow_empty_batch=False,
pad_batch_assignment=False
)
return torch.utils.data.DataLoader(
self.valid_dataset,
collate_fn=self.valid_dataset.collater,
batch_sampler=sampler,
num_workers=hparams['ds_workers'],
prefetch_factor=hparams['dataloader_prefetch_factor'],
persistent_workers=True
)
def test_dataloader(self):
return self.val_dataloader()
def on_test_start(self):
self.on_validation_start()
def test_step(self, sample, batch_idx):
return self.validation_step(sample, batch_idx)
def on_test_end(self):
return self.on_validation_end()
###########
# Running configuration
###########
@classmethod
def start(cls):
task = cls()
# if pre_train is not None:
# task.load_state_dict(pre_train,strict=False)
# print("load success-------------------------------------------------------------------")
work_dir = pathlib.Path(hparams['work_dir'])
trainer = pl.Trainer(
accelerator=hparams['pl_trainer_accelerator'],
devices=hparams['pl_trainer_devices'],
num_nodes=hparams['pl_trainer_num_nodes'],
strategy=get_strategy(
hparams['pl_trainer_devices'],
hparams['pl_trainer_num_nodes'],
hparams['pl_trainer_accelerator'],
hparams['pl_trainer_strategy'],
hparams['pl_trainer_precision'],
),
precision=hparams['pl_trainer_precision'],
callbacks=[
DsModelCheckpoint(
dirpath=work_dir,
filename='model_ckpt_steps_{step}',
auto_insert_metric_name=False,
monitor='step',
mode='max',
save_last=False,
# every_n_train_steps=hparams['val_check_interval'],
save_top_k=hparams['num_ckpt_keep'],
permanent_ckpt_start=hparams['permanent_ckpt_start'],
permanent_ckpt_interval=hparams['permanent_ckpt_interval'],
verbose=True
),
# LearningRateMonitor(logging_interval='step'),
DsTQDMProgressBar(),
],
logger=DsTensorBoardLogger(
save_dir=str(work_dir),
name='lightning_logs',
version='latest'
),
gradient_clip_val=hparams['clip_grad_norm'],
val_check_interval=hparams['val_check_interval'] * hparams['accumulate_grad_batches'],
# so this is global_steps
check_val_every_n_epoch=None,
log_every_n_steps=1,
max_steps=hparams['max_updates'],
use_distributed_sampler=False,
num_sanity_val_steps=hparams['num_sanity_val_steps'],
accumulate_grad_batches=hparams['accumulate_grad_batches']
)
if not hparams['infer']: # train
@rank_zero_only
def train_payload_copy():
# Copy spk_map.json and dictionary.txt to work dir
binary_dir = pathlib.Path(hparams['binary_data_dir'])
spk_map = work_dir / 'spk_map.json'
spk_map_src = binary_dir / 'spk_map.json'
if not spk_map.exists() and spk_map_src.exists():
shutil.copy(spk_map_src, spk_map)
print(f'| Copied spk map to {spk_map}.')
dictionary = work_dir / 'dictionary.txt'
dict_src = binary_dir / 'dictionary.txt'
if not dictionary.exists():
if dict_src.exists():
shutil.copy(dict_src, dictionary)
else:
shutil.copy(locate_dictionary(), dictionary)
print(f'| Copied dictionary to {dictionary}.')
train_payload_copy()
trainer.fit(task, ckpt_path=get_latest_checkpoint_path(work_dir))
else:
trainer.test(task)
def on_save_checkpoint(self, checkpoint):
if isinstance(self.model, CategorizedModule):
checkpoint['category'] = self.model.category
checkpoint['trainer_stage'] = self.trainer.state.stage.value
def on_load_checkpoint(self, checkpoint):
from lightning.pytorch.trainer.states import RunningStage
from utils import simulate_lr_scheduler
if checkpoint.get('trainer_stage', '') == RunningStage.VALIDATING.value:
self.skip_immediate_validation = True
optimizer_args = hparams['optimizer_args']
scheduler_args = hparams['lr_scheduler_args']
if 'beta1' in optimizer_args and 'beta2' in optimizer_args and 'betas' not in optimizer_args:
optimizer_args['betas'] = (optimizer_args['beta1'], optimizer_args['beta2'])
if checkpoint.get('optimizer_states', None):
opt_states = checkpoint['optimizer_states']
assert len(opt_states) == 1 # only support one optimizer
opt_state = opt_states[0]
for param_group in opt_state['param_groups']:
for k, v in optimizer_args.items():
if k in param_group and param_group[k] != v:
if 'lr_schedulers' in checkpoint and checkpoint['lr_schedulers'] and k == 'lr':
continue
rank_zero_info(f'| Overriding optimizer parameter {k} from checkpoint: {param_group[k]} -> {v}')
param_group[k] = v
if 'initial_lr' in param_group and param_group['initial_lr'] != optimizer_args['lr']:
rank_zero_info(
f'| Overriding optimizer parameter initial_lr from checkpoint: {param_group["initial_lr"]} -> {optimizer_args["lr"]}'
)
param_group['initial_lr'] = optimizer_args['lr']
if checkpoint.get('lr_schedulers', None):
assert checkpoint.get('optimizer_states', False)
assert len(checkpoint['lr_schedulers']) == 1 # only support one scheduler
checkpoint['lr_schedulers'][0] = simulate_lr_scheduler(
optimizer_args, scheduler_args,
step_count=checkpoint['global_step'],
num_param_groups=len(checkpoint['optimizer_states'][0]['param_groups'])
)
for param_group, new_lr in zip(
checkpoint['optimizer_states'][0]['param_groups'],
checkpoint['lr_schedulers'][0]['_last_lr'],
):
if param_group['lr'] != new_lr:
rank_zero_info(f'| Overriding optimizer parameter lr from checkpoint: {param_group["lr"]} -> {new_lr}')
param_group['lr'] = new_lr
|