Spaces:
Sleeping
Sleeping
File size: 15,892 Bytes
c42fe7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
import matplotlib
import torch
import torch.distributions
import torch.optim
import torch.utils.data
import utils
import utils.infer_utils
from basics.base_dataset import BaseDataset
from basics.base_task import BaseTask
from modules.losses import DurationLoss, DiffusionLoss, RectifiedFlowLoss
from modules.metrics.curve import RawCurveAccuracy
from modules.metrics.duration import RhythmCorrectness, PhonemeDurationAccuracy
from modules.toplevel import DiffSingerVariance
from utils.hparams import hparams
from utils.plot import dur_to_figure, pitch_note_to_figure, curve_to_figure
matplotlib.use('Agg')
class VarianceDataset(BaseDataset):
def __init__(self, prefix, preload=False):
super(VarianceDataset, self).__init__(prefix, hparams['dataset_size_key'], preload)
need_energy = hparams['predict_energy']
need_breathiness = hparams['predict_breathiness']
need_voicing = hparams['predict_voicing']
need_tension = hparams['predict_tension']
self.predict_variances = need_energy or need_breathiness or need_voicing or need_tension
def collater(self, samples):
batch = super().collater(samples)
if batch['size'] == 0:
return batch
tokens = utils.collate_nd([s['tokens'] for s in samples], 0)
ph_dur = utils.collate_nd([s['ph_dur'] for s in samples], 0)
batch.update({
'tokens': tokens,
'ph_dur': ph_dur
})
if hparams['use_spk_id']:
batch['spk_ids'] = torch.LongTensor([s['spk_id'] for s in samples])
if hparams['predict_dur']:
batch['ph2word'] = utils.collate_nd([s['ph2word'] for s in samples], 0)
batch['midi'] = utils.collate_nd([s['midi'] for s in samples], 0)
if hparams['predict_pitch']:
batch['note_midi'] = utils.collate_nd([s['note_midi'] for s in samples], -1)
batch['note_rest'] = utils.collate_nd([s['note_rest'] for s in samples], True)
batch['note_dur'] = utils.collate_nd([s['note_dur'] for s in samples], 0)
if hparams['use_glide_embed']:
batch['note_glide'] = utils.collate_nd([s['note_glide'] for s in samples], 0)
batch['mel2note'] = utils.collate_nd([s['mel2note'] for s in samples], 0)
batch['base_pitch'] = utils.collate_nd([s['base_pitch'] for s in samples], 0)
if hparams['predict_pitch'] or self.predict_variances:
batch['mel2ph'] = utils.collate_nd([s['mel2ph'] for s in samples], 0)
batch['pitch'] = utils.collate_nd([s['pitch'] for s in samples], 0)
batch['uv'] = utils.collate_nd([s['uv'] for s in samples], True)
if hparams['predict_energy']:
batch['energy'] = utils.collate_nd([s['energy'] for s in samples], 0)
if hparams['predict_breathiness']:
batch['breathiness'] = utils.collate_nd([s['breathiness'] for s in samples], 0)
if hparams['predict_voicing']:
batch['voicing'] = utils.collate_nd([s['voicing'] for s in samples], 0)
if hparams['predict_tension']:
batch['tension'] = utils.collate_nd([s['tension'] for s in samples], 0)
return batch
def random_retake_masks(b, t, device):
# 1/4 segments are True in average
B_masks = torch.randint(low=0, high=4, size=(b, 1), dtype=torch.long, device=device) == 0
# 1/3 frames are True in average
T_masks = utils.random_continuous_masks(b, t, dim=1, device=device)
# 1/4 segments and 1/2 frames are True in average (1/4 + 3/4 * 1/3 = 1/2)
return B_masks | T_masks
class VarianceTask(BaseTask):
def __init__(self):
super().__init__()
self.dataset_cls = VarianceDataset
self.diffusion_type = hparams['diffusion_type']
self.use_spk_id = hparams['use_spk_id']
self.predict_dur = hparams['predict_dur']
if self.predict_dur:
self.lambda_dur_loss = hparams['lambda_dur_loss']
self.predict_pitch = hparams['predict_pitch']
if self.predict_pitch:
self.lambda_pitch_loss = hparams['lambda_pitch_loss']
predict_energy = hparams['predict_energy']
predict_breathiness = hparams['predict_breathiness']
predict_voicing = hparams['predict_voicing']
predict_tension = hparams['predict_tension']
self.variance_prediction_list = []
if predict_energy:
self.variance_prediction_list.append('energy')
if predict_breathiness:
self.variance_prediction_list.append('breathiness')
if predict_voicing:
self.variance_prediction_list.append('voicing')
if predict_tension:
self.variance_prediction_list.append('tension')
self.predict_variances = len(self.variance_prediction_list) > 0
self.lambda_var_loss = hparams['lambda_var_loss']
super()._finish_init()
def _build_model(self):
return DiffSingerVariance(
vocab_size=len(self.phone_encoder),
)
# noinspection PyAttributeOutsideInit
def build_losses_and_metrics(self):
if self.predict_dur:
dur_hparams = hparams['dur_prediction_args']
self.dur_loss = DurationLoss(
offset=dur_hparams['log_offset'],
loss_type=dur_hparams['loss_type'],
lambda_pdur=dur_hparams['lambda_pdur_loss'],
lambda_wdur=dur_hparams['lambda_wdur_loss'],
lambda_sdur=dur_hparams['lambda_sdur_loss']
)
self.register_validation_loss('dur_loss')
self.register_validation_metric('rhythm_corr', RhythmCorrectness(tolerance=0.05))
self.register_validation_metric('ph_dur_acc', PhonemeDurationAccuracy(tolerance=0.2))
if self.predict_pitch:
if self.diffusion_type == 'ddpm':
self.pitch_loss = DiffusionLoss(loss_type=hparams['main_loss_type'])
elif self.diffusion_type == 'reflow':
self.pitch_loss = RectifiedFlowLoss(
loss_type=hparams['main_loss_type'], log_norm=hparams['main_loss_log_norm']
)
else:
raise ValueError(f'Unknown diffusion type: {self.diffusion_type}')
self.register_validation_loss('pitch_loss')
self.register_validation_metric('pitch_acc', RawCurveAccuracy(tolerance=0.5))
if self.predict_variances:
if self.diffusion_type == 'ddpm':
self.var_loss = DiffusionLoss(loss_type=hparams['main_loss_type'])
elif self.diffusion_type == 'reflow':
self.var_loss = RectifiedFlowLoss(
loss_type=hparams['main_loss_type'], log_norm=hparams['main_loss_log_norm']
)
else:
raise ValueError(f'Unknown diffusion type: {self.diffusion_type}')
self.register_validation_loss('var_loss')
def run_model(self, sample, infer=False):
spk_ids = sample['spk_ids'] if self.use_spk_id else None # [B,]
txt_tokens = sample['tokens'] # [B, T_ph]
ph_dur = sample['ph_dur'] # [B, T_ph]
ph2word = sample.get('ph2word') # [B, T_ph]
midi = sample.get('midi') # [B, T_ph]
mel2ph = sample.get('mel2ph') # [B, T_s]
note_midi = sample.get('note_midi') # [B, T_n]
note_rest = sample.get('note_rest') # [B, T_n]
note_dur = sample.get('note_dur') # [B, T_n]
note_glide = sample.get('note_glide') # [B, T_n]
mel2note = sample.get('mel2note') # [B, T_s]
base_pitch = sample.get('base_pitch') # [B, T_s]
pitch = sample.get('pitch') # [B, T_s]
energy = sample.get('energy') # [B, T_s]
breathiness = sample.get('breathiness') # [B, T_s]
voicing = sample.get('voicing') # [B, T_s]
tension = sample.get('tension') # [B, T_s]
pitch_retake = variance_retake = None
if (self.predict_pitch or self.predict_variances) and not infer:
# randomly select continuous retaking regions
b = sample['size']
t = mel2ph.shape[1]
device = mel2ph.device
if self.predict_pitch:
pitch_retake = random_retake_masks(b, t, device)
if self.predict_variances:
variance_retake = {
v_name: random_retake_masks(b, t, device)
for v_name in self.variance_prediction_list
}
output = self.model(
txt_tokens, midi=midi, ph2word=ph2word,
ph_dur=ph_dur, mel2ph=mel2ph,
note_midi=note_midi, note_rest=note_rest,
note_dur=note_dur, note_glide=note_glide, mel2note=mel2note,
base_pitch=base_pitch, pitch=pitch,
energy=energy, breathiness=breathiness, voicing=voicing, tension=tension,
pitch_retake=pitch_retake, variance_retake=variance_retake,
spk_id=spk_ids, infer=infer
)
dur_pred, pitch_pred, variances_pred = output
if infer:
if dur_pred is not None:
dur_pred = dur_pred.round().long()
return dur_pred, pitch_pred, variances_pred # Tensor, Tensor, Dict[str, Tensor]
else:
losses = {}
if dur_pred is not None:
losses['dur_loss'] = self.lambda_dur_loss * self.dur_loss(dur_pred, ph_dur, ph2word=ph2word)
non_padding = (mel2ph > 0).unsqueeze(-1) if mel2ph is not None else None
if pitch_pred is not None:
if self.diffusion_type == 'ddpm':
pitch_x_recon, pitch_noise = pitch_pred
pitch_loss = self.pitch_loss(
pitch_x_recon, pitch_noise, non_padding=non_padding
)
elif self.diffusion_type == 'reflow':
pitch_v_pred, pitch_v_gt, t = pitch_pred
pitch_loss = self.pitch_loss(
pitch_v_pred, pitch_v_gt, t=t, non_padding=non_padding
)
else:
raise ValueError(f"Unknown diffusion type: {self.diffusion_type}")
losses['pitch_loss'] = self.lambda_pitch_loss * pitch_loss
if variances_pred is not None:
if self.diffusion_type == 'ddpm':
var_x_recon, var_noise = variances_pred
var_loss = self.var_loss(
var_x_recon, var_noise, non_padding=non_padding
)
elif self.diffusion_type == 'reflow':
var_v_pred, var_v_gt, t = variances_pred
var_loss = self.var_loss(
var_v_pred, var_v_gt, t=t, non_padding=non_padding
)
else:
raise ValueError(f"Unknown diffusion type: {self.diffusion_type}")
losses['var_loss'] = self.lambda_var_loss * var_loss
return losses
def _validation_step(self, sample, batch_idx):
losses = self.run_model(sample, infer=False)
if min(sample['indices']) < hparams['num_valid_plots']:
def sample_get(key, idx, abs_idx):
return sample[key][idx][:self.valid_dataset.metadata[key][abs_idx]].unsqueeze(0)
dur_preds, pitch_preds, variances_preds = self.run_model(sample, infer=True)
for i in range(len(sample['indices'])):
data_idx = sample['indices'][i]
if data_idx < hparams['num_valid_plots']:
if dur_preds is not None:
dur_len = self.valid_dataset.metadata['ph_dur'][data_idx]
tokens = sample_get('tokens', i, data_idx)
gt_dur = sample_get('ph_dur', i, data_idx)
pred_dur = dur_preds[i][:dur_len].unsqueeze(0)
ph2word = sample_get('ph2word', i, data_idx)
mask = tokens != 0
self.valid_metrics['rhythm_corr'].update(
pdur_pred=pred_dur, pdur_target=gt_dur, ph2word=ph2word, mask=mask
)
self.valid_metrics['ph_dur_acc'].update(
pdur_pred=pred_dur, pdur_target=gt_dur, ph2word=ph2word, mask=mask
)
self.plot_dur(data_idx, gt_dur, pred_dur, tokens)
if pitch_preds is not None:
pitch_len = self.valid_dataset.metadata['pitch'][data_idx]
pred_pitch = sample_get('base_pitch', i, data_idx) + pitch_preds[i][:pitch_len].unsqueeze(0)
gt_pitch = sample_get('pitch', i, data_idx)
mask = (sample_get('mel2ph', i, data_idx) > 0) & ~sample_get('uv', i, data_idx)
self.valid_metrics['pitch_acc'].update(pred=pred_pitch, target=gt_pitch, mask=mask)
self.plot_pitch(
data_idx,
gt_pitch=gt_pitch,
pred_pitch=pred_pitch,
note_midi=sample_get('note_midi', i, data_idx),
note_dur=sample_get('note_dur', i, data_idx),
note_rest=sample_get('note_rest', i, data_idx)
)
for name in self.variance_prediction_list:
variance_len = self.valid_dataset.metadata[name][data_idx]
gt_variances = sample[name][i][:variance_len].unsqueeze(0)
pred_variances = variances_preds[name][i][:variance_len].unsqueeze(0)
self.plot_curve(
data_idx,
gt_curve=gt_variances,
pred_curve=pred_variances,
curve_name=name
)
return losses, sample['size']
############
# validation plots
############
def plot_dur(self, data_idx, gt_dur, pred_dur, txt=None):
gt_dur = gt_dur[0].cpu().numpy()
pred_dur = pred_dur[0].cpu().numpy()
txt = self.phone_encoder.decode(txt[0].cpu().numpy()).split()
title_text = f"{self.valid_dataset.metadata['spk_names'][data_idx]} - {self.valid_dataset.metadata['names'][data_idx]}"
self.logger.all_rank_experiment.add_figure(f'dur_{data_idx}', dur_to_figure(
gt_dur, pred_dur, txt, title_text
), self.global_step)
def plot_pitch(self, data_idx, gt_pitch, pred_pitch, note_midi, note_dur, note_rest):
gt_pitch = gt_pitch[0].cpu().numpy()
pred_pitch = pred_pitch[0].cpu().numpy()
note_midi = note_midi[0].cpu().numpy()
note_dur = note_dur[0].cpu().numpy()
note_rest = note_rest[0].cpu().numpy()
title_text = f"{self.valid_dataset.metadata['spk_names'][data_idx]} - {self.valid_dataset.metadata['names'][data_idx]}"
self.logger.all_rank_experiment.add_figure(f'pitch_{data_idx}', pitch_note_to_figure(
gt_pitch, pred_pitch, note_midi, note_dur, note_rest, title_text
), self.global_step)
def plot_curve(self, data_idx, gt_curve, pred_curve, base_curve=None, grid=None, curve_name='curve'):
gt_curve = gt_curve[0].cpu().numpy()
pred_curve = pred_curve[0].cpu().numpy()
if base_curve is not None:
base_curve = base_curve[0].cpu().numpy()
title_text = f"{self.valid_dataset.metadata['spk_names'][data_idx]} - {self.valid_dataset.metadata['names'][data_idx]}"
self.logger.all_rank_experiment.add_figure(f'{curve_name}_{data_idx}', curve_to_figure(
gt_curve, pred_curve, base_curve, grid=grid, title=title_text
), self.global_step)
|