File size: 15,892 Bytes
c42fe7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import matplotlib
import torch
import torch.distributions
import torch.optim
import torch.utils.data

import utils
import utils.infer_utils
from basics.base_dataset import BaseDataset
from basics.base_task import BaseTask
from modules.losses import DurationLoss, DiffusionLoss, RectifiedFlowLoss
from modules.metrics.curve import RawCurveAccuracy
from modules.metrics.duration import RhythmCorrectness, PhonemeDurationAccuracy
from modules.toplevel import DiffSingerVariance
from utils.hparams import hparams
from utils.plot import dur_to_figure, pitch_note_to_figure, curve_to_figure

matplotlib.use('Agg')


class VarianceDataset(BaseDataset):
    def __init__(self, prefix, preload=False):
        super(VarianceDataset, self).__init__(prefix, hparams['dataset_size_key'], preload)
        need_energy = hparams['predict_energy']
        need_breathiness = hparams['predict_breathiness']
        need_voicing = hparams['predict_voicing']
        need_tension = hparams['predict_tension']
        self.predict_variances = need_energy or need_breathiness or need_voicing or need_tension

    def collater(self, samples):
        batch = super().collater(samples)
        if batch['size'] == 0:
            return batch

        tokens = utils.collate_nd([s['tokens'] for s in samples], 0)
        ph_dur = utils.collate_nd([s['ph_dur'] for s in samples], 0)
        batch.update({
            'tokens': tokens,
            'ph_dur': ph_dur
        })

        if hparams['use_spk_id']:
            batch['spk_ids'] = torch.LongTensor([s['spk_id'] for s in samples])
        if hparams['predict_dur']:
            batch['ph2word'] = utils.collate_nd([s['ph2word'] for s in samples], 0)
            batch['midi'] = utils.collate_nd([s['midi'] for s in samples], 0)
        if hparams['predict_pitch']:
            batch['note_midi'] = utils.collate_nd([s['note_midi'] for s in samples], -1)
            batch['note_rest'] = utils.collate_nd([s['note_rest'] for s in samples], True)
            batch['note_dur'] = utils.collate_nd([s['note_dur'] for s in samples], 0)
            if hparams['use_glide_embed']:
                batch['note_glide'] = utils.collate_nd([s['note_glide'] for s in samples], 0)
            batch['mel2note'] = utils.collate_nd([s['mel2note'] for s in samples], 0)
            batch['base_pitch'] = utils.collate_nd([s['base_pitch'] for s in samples], 0)
        if hparams['predict_pitch'] or self.predict_variances:
            batch['mel2ph'] = utils.collate_nd([s['mel2ph'] for s in samples], 0)
            batch['pitch'] = utils.collate_nd([s['pitch'] for s in samples], 0)
            batch['uv'] = utils.collate_nd([s['uv'] for s in samples], True)
        if hparams['predict_energy']:
            batch['energy'] = utils.collate_nd([s['energy'] for s in samples], 0)
        if hparams['predict_breathiness']:
            batch['breathiness'] = utils.collate_nd([s['breathiness'] for s in samples], 0)
        if hparams['predict_voicing']:
            batch['voicing'] = utils.collate_nd([s['voicing'] for s in samples], 0)
        if hparams['predict_tension']:
            batch['tension'] = utils.collate_nd([s['tension'] for s in samples], 0)

        return batch


def random_retake_masks(b, t, device):
    # 1/4 segments are True in average
    B_masks = torch.randint(low=0, high=4, size=(b, 1), dtype=torch.long, device=device) == 0
    # 1/3 frames are True in average
    T_masks = utils.random_continuous_masks(b, t, dim=1, device=device)
    # 1/4 segments and 1/2 frames are True in average (1/4 + 3/4 * 1/3 = 1/2)
    return B_masks | T_masks


class VarianceTask(BaseTask):
    def __init__(self):
        super().__init__()
        self.dataset_cls = VarianceDataset

        self.diffusion_type = hparams['diffusion_type']

        self.use_spk_id = hparams['use_spk_id']

        self.predict_dur = hparams['predict_dur']
        if self.predict_dur:
            self.lambda_dur_loss = hparams['lambda_dur_loss']

        self.predict_pitch = hparams['predict_pitch']
        if self.predict_pitch:
            self.lambda_pitch_loss = hparams['lambda_pitch_loss']

        predict_energy = hparams['predict_energy']
        predict_breathiness = hparams['predict_breathiness']
        predict_voicing = hparams['predict_voicing']
        predict_tension = hparams['predict_tension']
        self.variance_prediction_list = []
        if predict_energy:
            self.variance_prediction_list.append('energy')
        if predict_breathiness:
            self.variance_prediction_list.append('breathiness')
        if predict_voicing:
            self.variance_prediction_list.append('voicing')
        if predict_tension:
            self.variance_prediction_list.append('tension')
        self.predict_variances = len(self.variance_prediction_list) > 0
        self.lambda_var_loss = hparams['lambda_var_loss']
        super()._finish_init()

    def _build_model(self):
        return DiffSingerVariance(
            vocab_size=len(self.phone_encoder),
        )

    # noinspection PyAttributeOutsideInit
    def build_losses_and_metrics(self):
        if self.predict_dur:
            dur_hparams = hparams['dur_prediction_args']
            self.dur_loss = DurationLoss(
                offset=dur_hparams['log_offset'],
                loss_type=dur_hparams['loss_type'],
                lambda_pdur=dur_hparams['lambda_pdur_loss'],
                lambda_wdur=dur_hparams['lambda_wdur_loss'],
                lambda_sdur=dur_hparams['lambda_sdur_loss']
            )
            self.register_validation_loss('dur_loss')
            self.register_validation_metric('rhythm_corr', RhythmCorrectness(tolerance=0.05))
            self.register_validation_metric('ph_dur_acc', PhonemeDurationAccuracy(tolerance=0.2))
        if self.predict_pitch:
            if self.diffusion_type == 'ddpm':
                self.pitch_loss = DiffusionLoss(loss_type=hparams['main_loss_type'])
            elif self.diffusion_type == 'reflow':
                self.pitch_loss = RectifiedFlowLoss(
                    loss_type=hparams['main_loss_type'], log_norm=hparams['main_loss_log_norm']
                )
            else:
                raise ValueError(f'Unknown diffusion type: {self.diffusion_type}')
            self.register_validation_loss('pitch_loss')
            self.register_validation_metric('pitch_acc', RawCurveAccuracy(tolerance=0.5))
        if self.predict_variances:
            if self.diffusion_type == 'ddpm':
                self.var_loss = DiffusionLoss(loss_type=hparams['main_loss_type'])
            elif self.diffusion_type == 'reflow':
                self.var_loss = RectifiedFlowLoss(
                    loss_type=hparams['main_loss_type'], log_norm=hparams['main_loss_log_norm']
                )
            else:
                raise ValueError(f'Unknown diffusion type: {self.diffusion_type}')
            self.register_validation_loss('var_loss')

    def run_model(self, sample, infer=False):
        spk_ids = sample['spk_ids'] if self.use_spk_id else None  # [B,]
        txt_tokens = sample['tokens']  # [B, T_ph]
        ph_dur = sample['ph_dur']  # [B, T_ph]
        ph2word = sample.get('ph2word')  # [B, T_ph]
        midi = sample.get('midi')  # [B, T_ph]
        mel2ph = sample.get('mel2ph')  # [B, T_s]

        note_midi = sample.get('note_midi')  # [B, T_n]
        note_rest = sample.get('note_rest')  # [B, T_n]
        note_dur = sample.get('note_dur')  # [B, T_n]
        note_glide = sample.get('note_glide')  # [B, T_n]
        mel2note = sample.get('mel2note')  # [B, T_s]

        base_pitch = sample.get('base_pitch')  # [B, T_s]
        pitch = sample.get('pitch')  # [B, T_s]
        energy = sample.get('energy')  # [B, T_s]
        breathiness = sample.get('breathiness')  # [B, T_s]
        voicing = sample.get('voicing')  # [B, T_s]
        tension = sample.get('tension')  # [B, T_s]

        pitch_retake = variance_retake = None
        if (self.predict_pitch or self.predict_variances) and not infer:
            # randomly select continuous retaking regions
            b = sample['size']
            t = mel2ph.shape[1]
            device = mel2ph.device
            if self.predict_pitch:
                pitch_retake = random_retake_masks(b, t, device)
            if self.predict_variances:
                variance_retake = {
                    v_name: random_retake_masks(b, t, device)
                    for v_name in self.variance_prediction_list
                }

        output = self.model(
            txt_tokens, midi=midi, ph2word=ph2word,
            ph_dur=ph_dur, mel2ph=mel2ph,
            note_midi=note_midi, note_rest=note_rest,
            note_dur=note_dur, note_glide=note_glide, mel2note=mel2note,
            base_pitch=base_pitch, pitch=pitch,
            energy=energy, breathiness=breathiness, voicing=voicing, tension=tension,
            pitch_retake=pitch_retake, variance_retake=variance_retake,
            spk_id=spk_ids, infer=infer
        )

        dur_pred, pitch_pred, variances_pred = output
        if infer:
            if dur_pred is not None:
                dur_pred = dur_pred.round().long()
            return dur_pred, pitch_pred, variances_pred  # Tensor, Tensor, Dict[str, Tensor]
        else:
            losses = {}
            if dur_pred is not None:
                losses['dur_loss'] = self.lambda_dur_loss * self.dur_loss(dur_pred, ph_dur, ph2word=ph2word)
            non_padding = (mel2ph > 0).unsqueeze(-1) if mel2ph is not None else None
            if pitch_pred is not None:
                if self.diffusion_type == 'ddpm':
                    pitch_x_recon, pitch_noise = pitch_pred
                    pitch_loss = self.pitch_loss(
                        pitch_x_recon, pitch_noise, non_padding=non_padding
                    )
                elif self.diffusion_type == 'reflow':
                    pitch_v_pred, pitch_v_gt, t = pitch_pred
                    pitch_loss = self.pitch_loss(
                        pitch_v_pred, pitch_v_gt, t=t, non_padding=non_padding
                    )
                else:
                    raise ValueError(f"Unknown diffusion type: {self.diffusion_type}")
                losses['pitch_loss'] = self.lambda_pitch_loss * pitch_loss
            if variances_pred is not None:
                if self.diffusion_type == 'ddpm':
                    var_x_recon, var_noise = variances_pred
                    var_loss = self.var_loss(
                        var_x_recon, var_noise, non_padding=non_padding
                    )
                elif self.diffusion_type == 'reflow':
                    var_v_pred, var_v_gt, t = variances_pred
                    var_loss = self.var_loss(
                        var_v_pred, var_v_gt, t=t, non_padding=non_padding
                    )
                else:
                    raise ValueError(f"Unknown diffusion type: {self.diffusion_type}")
                losses['var_loss'] = self.lambda_var_loss * var_loss

            return losses

    def _validation_step(self, sample, batch_idx):
        losses = self.run_model(sample, infer=False)
        if min(sample['indices']) < hparams['num_valid_plots']:
            def sample_get(key, idx, abs_idx):
                return sample[key][idx][:self.valid_dataset.metadata[key][abs_idx]].unsqueeze(0)

            dur_preds, pitch_preds, variances_preds = self.run_model(sample, infer=True)
            for i in range(len(sample['indices'])):
                data_idx = sample['indices'][i]
                if data_idx < hparams['num_valid_plots']:
                    if dur_preds is not None:
                        dur_len = self.valid_dataset.metadata['ph_dur'][data_idx]
                        tokens = sample_get('tokens', i, data_idx)
                        gt_dur = sample_get('ph_dur', i, data_idx)
                        pred_dur = dur_preds[i][:dur_len].unsqueeze(0)
                        ph2word = sample_get('ph2word', i, data_idx)
                        mask = tokens != 0
                        self.valid_metrics['rhythm_corr'].update(
                            pdur_pred=pred_dur, pdur_target=gt_dur, ph2word=ph2word, mask=mask
                        )
                        self.valid_metrics['ph_dur_acc'].update(
                            pdur_pred=pred_dur, pdur_target=gt_dur, ph2word=ph2word, mask=mask
                        )
                        self.plot_dur(data_idx, gt_dur, pred_dur, tokens)
                    if pitch_preds is not None:
                        pitch_len = self.valid_dataset.metadata['pitch'][data_idx]
                        pred_pitch = sample_get('base_pitch', i, data_idx) + pitch_preds[i][:pitch_len].unsqueeze(0)
                        gt_pitch = sample_get('pitch', i, data_idx)
                        mask = (sample_get('mel2ph', i, data_idx) > 0) & ~sample_get('uv', i, data_idx)
                        self.valid_metrics['pitch_acc'].update(pred=pred_pitch, target=gt_pitch, mask=mask)
                        self.plot_pitch(
                            data_idx,
                            gt_pitch=gt_pitch,
                            pred_pitch=pred_pitch,
                            note_midi=sample_get('note_midi', i, data_idx),
                            note_dur=sample_get('note_dur', i, data_idx),
                            note_rest=sample_get('note_rest', i, data_idx)
                        )
                    for name in self.variance_prediction_list:
                        variance_len = self.valid_dataset.metadata[name][data_idx]
                        gt_variances = sample[name][i][:variance_len].unsqueeze(0)
                        pred_variances = variances_preds[name][i][:variance_len].unsqueeze(0)
                        self.plot_curve(
                            data_idx,
                            gt_curve=gt_variances,
                            pred_curve=pred_variances,
                            curve_name=name
                        )
        return losses, sample['size']

    ############
    # validation plots
    ############
    def plot_dur(self, data_idx, gt_dur, pred_dur, txt=None):
        gt_dur = gt_dur[0].cpu().numpy()
        pred_dur = pred_dur[0].cpu().numpy()
        txt = self.phone_encoder.decode(txt[0].cpu().numpy()).split()
        title_text = f"{self.valid_dataset.metadata['spk_names'][data_idx]} - {self.valid_dataset.metadata['names'][data_idx]}"
        self.logger.all_rank_experiment.add_figure(f'dur_{data_idx}', dur_to_figure(
            gt_dur, pred_dur, txt, title_text
        ), self.global_step)

    def plot_pitch(self, data_idx, gt_pitch, pred_pitch, note_midi, note_dur, note_rest):
        gt_pitch = gt_pitch[0].cpu().numpy()
        pred_pitch = pred_pitch[0].cpu().numpy()
        note_midi = note_midi[0].cpu().numpy()
        note_dur = note_dur[0].cpu().numpy()
        note_rest = note_rest[0].cpu().numpy()
        title_text = f"{self.valid_dataset.metadata['spk_names'][data_idx]} - {self.valid_dataset.metadata['names'][data_idx]}"
        self.logger.all_rank_experiment.add_figure(f'pitch_{data_idx}', pitch_note_to_figure(
            gt_pitch, pred_pitch, note_midi, note_dur, note_rest, title_text
        ), self.global_step)

    def plot_curve(self, data_idx, gt_curve, pred_curve, base_curve=None, grid=None, curve_name='curve'):
        gt_curve = gt_curve[0].cpu().numpy()
        pred_curve = pred_curve[0].cpu().numpy()
        if base_curve is not None:
            base_curve = base_curve[0].cpu().numpy()
        title_text = f"{self.valid_dataset.metadata['spk_names'][data_idx]} - {self.valid_dataset.metadata['names'][data_idx]}"
        self.logger.all_rank_experiment.add_figure(f'{curve_name}_{data_idx}', curve_to_figure(
            gt_curve, pred_curve, base_curve, grid=grid, title=title_text
        ), self.global_step)