File size: 5,807 Bytes
c42fe7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import torch
import torch.nn as nn
from torch.nn import functional as F

from modules.commons.common_layers import (
    NormalInitEmbedding as Embedding,
    XavierUniformInitLinear as Linear,
)
from modules.fastspeech.tts_modules import FastSpeech2Encoder, DurationPredictor
from utils.hparams import hparams
from utils.text_encoder import PAD_INDEX


class FastSpeech2Variance(nn.Module):
    def __init__(self, vocab_size):
        super().__init__()
        self.predict_dur = hparams['predict_dur']
        self.linguistic_mode = 'word' if hparams['predict_dur'] else 'phoneme'

        self.txt_embed = Embedding(vocab_size, hparams['hidden_size'], PAD_INDEX)

        if self.predict_dur:
            self.onset_embed = Embedding(2, hparams['hidden_size'])
            self.word_dur_embed = Linear(1, hparams['hidden_size'])
        else:
            self.ph_dur_embed = Linear(1, hparams['hidden_size'])

        self.encoder = FastSpeech2Encoder(
            hidden_size=hparams['hidden_size'], num_layers=hparams['enc_layers'],
            ffn_kernel_size=hparams['enc_ffn_kernel_size'], ffn_act=hparams['ffn_act'],
            dropout=hparams['dropout'], num_heads=hparams['num_heads'],
            use_pos_embed=hparams['use_pos_embed'], rel_pos=hparams.get('rel_pos', False), 
            use_rope=hparams.get('use_rope', False)
        )

        dur_hparams = hparams['dur_prediction_args']
        if self.predict_dur:
            self.midi_embed = Embedding(128, hparams['hidden_size'])
            self.dur_predictor = DurationPredictor(
                in_dims=hparams['hidden_size'],
                n_chans=dur_hparams['hidden_size'],
                n_layers=dur_hparams['num_layers'],
                dropout_rate=dur_hparams['dropout'],
                kernel_size=dur_hparams['kernel_size'],
                offset=dur_hparams['log_offset'],
                dur_loss_type=dur_hparams['loss_type']
            )

    def forward(self, txt_tokens, midi, ph2word, ph_dur=None, word_dur=None, spk_embed=None, infer=True):
        """
        :param txt_tokens: (train, infer) [B, T_ph]
        :param midi: (train, infer) [B, T_ph]
        :param ph2word: (train, infer) [B, T_ph]
        :param ph_dur: (train, [infer]) [B, T_ph]
        :param word_dur: (infer) [B, T_w]
        :param spk_embed: (train) [B, T_ph, H]
        :param infer: whether inference
        :return: encoder_out, ph_dur_pred
        """
        txt_embed = self.txt_embed(txt_tokens)
        if self.linguistic_mode == 'word':
            b = txt_tokens.shape[0]
            onset = torch.diff(ph2word, dim=1, prepend=ph2word.new_zeros(b, 1)) > 0
            onset_embed = self.onset_embed(onset.long())  # [B, T_ph, H]

            if word_dur is None or not infer:
                word_dur = ph_dur.new_zeros(b, ph2word.max() + 1).scatter_add(
                    1, ph2word, ph_dur
                )[:, 1:]  # [B, T_ph] => [B, T_w]
            word_dur = torch.gather(F.pad(word_dur, [1, 0], value=0), 1, ph2word)  # [B, T_w] => [B, T_ph]
            word_dur_embed = self.word_dur_embed(word_dur.float()[:, :, None])

            encoder_out = self.encoder(txt_embed, onset_embed + word_dur_embed, txt_tokens == 0)
        else:
            ph_dur_embed = self.ph_dur_embed(ph_dur.float()[:, :, None])
            encoder_out = self.encoder(txt_embed, ph_dur_embed, txt_tokens == 0)

        if self.predict_dur:
            midi_embed = self.midi_embed(midi)  # => [B, T_ph, H]
            dur_cond = encoder_out + midi_embed
            if spk_embed is not None:
                dur_cond += spk_embed
            ph_dur_pred = self.dur_predictor(dur_cond, x_masks=txt_tokens == PAD_INDEX, infer=infer)

            return encoder_out, ph_dur_pred
        else:
            return encoder_out, None


class MelodyEncoder(nn.Module):
    def __init__(self, enc_hparams: dict):
        super().__init__()

        def get_hparam(key):
            return enc_hparams.get(key, hparams.get(key))

        # MIDI inputs
        hidden_size = get_hparam('hidden_size')
        self.note_midi_embed = Linear(1, hidden_size)
        self.note_dur_embed = Linear(1, hidden_size)

        # ornament inputs
        self.use_glide_embed = hparams['use_glide_embed']
        self.glide_embed_scale = hparams['glide_embed_scale']
        if self.use_glide_embed:
            # 0: none, 1: up, 2: down
            self.note_glide_embed = Embedding(len(hparams['glide_types']) + 1, hidden_size, padding_idx=0)

        self.encoder = FastSpeech2Encoder(
            hidden_size=hidden_size, num_layers=get_hparam('enc_layers'),
            ffn_kernel_size=get_hparam('enc_ffn_kernel_size'), ffn_act=get_hparam('ffn_act'),
            dropout=get_hparam('dropout'), num_heads=get_hparam('num_heads'),
            use_pos_embed=get_hparam('use_pos_embed'), rel_pos=get_hparam('rel_pos'),
            use_rope=get_hparam('use_rope')
        )
        self.out_proj = Linear(hidden_size, hparams['hidden_size'])

    def forward(self, note_midi, note_rest, note_dur, glide=None):
        """
        :param note_midi: float32 [B, T_n], -1: padding
        :param note_rest: bool [B, T_n]
        :param note_dur: int64 [B, T_n]
        :param glide: int64 [B, T_n]
        :return: [B, T_n, H]
        """
        midi_embed = self.note_midi_embed(note_midi[:, :, None]) * ~note_rest[:, :, None]
        dur_embed = self.note_dur_embed(note_dur.float()[:, :, None])
        ornament_embed = 0
        if self.use_glide_embed:
            ornament_embed += self.note_glide_embed(glide) * self.glide_embed_scale
        encoder_out = self.encoder(
            midi_embed, dur_embed + ornament_embed,
            padding_mask=note_midi < 0
        )
        encoder_out = self.out_proj(encoder_out)
        return encoder_out