Spaces:
Sleeping
Sleeping
File size: 10,443 Bytes
c42fe7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
from __future__ import annotations
import math
import numpy as np
import torch
import torch.nn.functional as F
import torch.onnx.operators
from torch import nn
from torch.nn import LayerNorm, MultiheadAttention, ReLU, GELU, SiLU
import utils
class NormalInitEmbedding(torch.nn.Embedding):
def __init__(
self,
num_embeddings: int,
embedding_dim: int,
padding_idx: int | None = None,
*args,
**kwargs
):
super().__init__(num_embeddings, embedding_dim, *args, padding_idx=padding_idx, **kwargs)
nn.init.normal_(self.weight, mean=0, std=self.embedding_dim ** -0.5)
if padding_idx is not None:
nn.init.constant_(self.weight[padding_idx], 0)
class XavierUniformInitLinear(torch.nn.Linear):
def __init__(
self,
in_features: int,
out_features: int,
*args,
bias: bool = True,
**kwargs
):
super().__init__(in_features, out_features, *args, bias=bias, **kwargs)
nn.init.xavier_uniform_(self.weight)
if bias:
nn.init.constant_(self.bias, 0.)
class SinusoidalPositionalEmbedding(nn.Module):
"""This module produces sinusoidal positional embeddings of any length.
Padding symbols are ignored.
"""
def __init__(self, embedding_dim, padding_idx, init_size=1024):
super().__init__()
self.embedding_dim = embedding_dim
self.padding_idx = padding_idx
self.weights = SinusoidalPositionalEmbedding.get_embedding(
init_size,
embedding_dim,
padding_idx,
)
self.register_buffer('_float_tensor', torch.FloatTensor(1))
@staticmethod
def get_embedding(num_embeddings, embedding_dim, padding_idx=None):
"""Build sinusoidal embeddings.
This matches the implementation in tensor2tensor, but differs slightly
from the description in Section 3.5 of "Attention Is All You Need".
"""
half_dim = embedding_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb)
emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0)
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
if embedding_dim % 2 == 1:
# zero pad
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
if padding_idx is not None:
emb[padding_idx, :] = 0
return emb
def forward(self, x, incremental_state=None, timestep=None, positions=None):
"""Input is expected to be of size [bsz x seqlen]."""
bsz, seq_len = x.shape[:2]
max_pos = self.padding_idx + 1 + seq_len
if self.weights is None or max_pos > self.weights.size(0):
# recompute/expand embeddings if needed
self.weights = SinusoidalPositionalEmbedding.get_embedding(
max_pos,
self.embedding_dim,
self.padding_idx,
)
self.weights = self.weights.to(self._float_tensor)
if incremental_state is not None:
# positions is the same for every token when decoding a single step
pos = timestep.view(-1)[0] + 1 if timestep is not None else seq_len
return self.weights[self.padding_idx + pos, :].expand(bsz, 1, -1)
positions = utils.make_positions(x, self.padding_idx) if positions is None else positions
return self.weights.index_select(0, positions.view(-1)).view(bsz, seq_len, -1).detach()
@staticmethod
def max_positions():
"""Maximum number of supported positions."""
return int(1e5) # an arbitrary large number
class SwiGLU(nn.Module):
# Swish-Applies the gated linear unit function.
def __init__(self, dim=-1):
super().__init__()
self.dim = dim
def forward(self, x):
# out, gate = x.chunk(2, dim=self.dim)
# Using torch.split instead of chunk for ONNX export compatibility.
out, gate = torch.split(x, x.size(self.dim) // 2, dim=self.dim)
return out * F.silu(gate)
class TransformerFFNLayer(nn.Module):
def __init__(self, hidden_size, filter_size, kernel_size=1, dropout=0., act='gelu'):
super().__init__()
self.kernel_size = kernel_size
self.dropout = dropout
self.act = act
filter_size_1 = filter_size
if self.act == 'relu':
self.act_fn = ReLU()
elif self.act == 'gelu':
self.act_fn = GELU()
elif self.act == 'swish':
self.act_fn = SiLU()
elif self.act == 'swiglu':
self.act_fn = SwiGLU()
filter_size_1 = filter_size * 2
else:
raise ValueError(f'{act} is not a valid activation')
self.ffn_1 = nn.Conv1d(hidden_size, filter_size_1, kernel_size, padding=kernel_size // 2)
self.ffn_2 = XavierUniformInitLinear(filter_size, hidden_size)
def forward(self, x):
# x: B x T x C
x = self.ffn_1(x.transpose(1, 2)).transpose(1, 2)
x = x * self.kernel_size ** -0.5
x = self.act_fn(x)
x = F.dropout(x, self.dropout, training=self.training)
x = self.ffn_2(x)
return x
class MultiheadSelfAttentionWithRoPE(nn.Module):
def __init__(self, embed_dim, num_heads, dropout=0.1, bias=False, rotary_embed=None):
super().__init__()
assert embed_dim % num_heads == 0, "Embedding dimension must be divisible by number of heads"
self.embed_dim = embed_dim
self.num_heads = num_heads
self.head_dim = embed_dim // num_heads
# Linear layers for Q, K, V projections
self.in_proj = nn.Linear(embed_dim, embed_dim * 3, bias=bias)
# Final linear layer after concatenation
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
# Dropout layer
self.dropout = nn.Dropout(dropout)
# Rotary Embeddings
self.rotary_embed = rotary_embed
def forward(self, x, key_padding_mask=None):
# x: (B, L, C)
# key_padding_mask: (B, L)
batch_size, seq_len, embed_dim = x.size()
# Project inputs to Q, K, V
Q, K, V = torch.split(self.in_proj(x), self.embed_dim, dim=-1)
# Reshape Q, K, V for multi-head attention
Q = Q.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2) # (B, H, L, D)
K = K.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2) # (B, H, L, D)
V = V.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2) # (B, H, L, D)
# Apply RoPE
if self.rotary_embed is not None:
Q = self.rotary_embed.rotate_queries_or_keys(Q)
K = self.rotary_embed.rotate_queries_or_keys(K)
# Compute attention scores
scores = torch.matmul(Q, K.transpose(-2, -1)) / np.sqrt(self.head_dim) # (B, H, L, L)
# Apply key padding mask if provided
if key_padding_mask is not None:
# Expand mask to match attention scores shape
mask = key_padding_mask.unsqueeze(1).unsqueeze(1) # (B, 1, 1, L)
scores = scores.masked_fill(mask == 1, -np.inf) # Masked positions are set to -inf
# Compute attention weights
attn_weights = F.softmax(scores, dim=-1) # (B, H, L, L)
attn_weights = self.dropout(attn_weights)
# Apply attention weights to V
attn_output = torch.matmul(attn_weights, V) # (B, H, L, D)
# Reshape and concatenate heads
attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, seq_len, embed_dim) # (B, L, C)
# Final linear projection
output = self.out_proj(attn_output) # (B, L, C)
return output
class EncSALayer(nn.Module):
def __init__(self, c, num_heads, dropout, attention_dropout=0.1,
relu_dropout=0.1, kernel_size=9, act='gelu', rotary_embed=None):
super().__init__()
self.dropout = dropout
self.layer_norm1 = LayerNorm(c)
if rotary_embed is None:
self.self_attn = MultiheadAttention(
c, num_heads, dropout=attention_dropout, bias=False, batch_first=False
)
self.use_rope = False
else:
self.self_attn = MultiheadSelfAttentionWithRoPE(
c, num_heads, dropout=attention_dropout, bias=False, rotary_embed=rotary_embed
)
self.use_rope = True
self.layer_norm2 = LayerNorm(c)
self.ffn = TransformerFFNLayer(
c, 4 * c, kernel_size=kernel_size, dropout=relu_dropout, act=act
)
def forward(self, x, encoder_padding_mask=None, **kwargs):
layer_norm_training = kwargs.get('layer_norm_training', None)
if layer_norm_training is not None:
self.layer_norm1.training = layer_norm_training
self.layer_norm2.training = layer_norm_training
residual = x
x = self.layer_norm1(x)
if self.use_rope:
x = self.self_attn(x, key_padding_mask=encoder_padding_mask)
else:
x = x.transpose(0, 1)
x, _, = self.self_attn(
query=x,
key=x,
value=x,
key_padding_mask=encoder_padding_mask
)
x = x.transpose(0, 1)
x = F.dropout(x, self.dropout, training=self.training)
x = residual + x
x = x * (1 - encoder_padding_mask.float())[..., None]
residual = x
x = self.layer_norm2(x)
x = self.ffn(x)
x = F.dropout(x, self.dropout, training=self.training)
x = residual + x
x = x * (1 - encoder_padding_mask.float())[..., None]
return x
class SinusoidalPosEmb(nn.Module):
def __init__(self, dim):
super().__init__()
self.dim = dim
def forward(self, x):
device = x.device
half_dim = self.dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
emb = x[:, None] * emb[None, :]
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
return emb
|