File size: 20,017 Bytes
0a40afa
 
 
 
 
 
 
 
 
 
 
 
966ffcd
0a40afa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2eac01a
0a40afa
 
2eac01a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a40afa
 
2eac01a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a40afa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
924cb7d
 
 
 
 
 
 
 
 
f98e92f
924cb7d
 
 
 
 
 
 
f98e92f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
924cb7d
0a40afa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
966ffcd
 
 
 
0a40afa
 
 
 
 
924cb7d
f98e92f
 
0a40afa
 
 
 
 
 
966ffcd
0a40afa
 
966ffcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a40afa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
"""Streamlit front‑end entry‑point."""
import yaml
import json
import streamlit as st
import logging
from dotenv import load_dotenv
from orchestrator.planner import Planner
from orchestrator.executor import Executor
from config.settings import settings
import fitz  # PyMuPDF local import to avoid heavy load on startup
import pandas as pd
from datetime import datetime
from services.cost_tracker import CostTracker

# Create a custom stream handler to capture logs
class LogCaptureHandler(logging.StreamHandler):
    def __init__(self):
        super().__init__()
        self.logs = []
        
    def emit(self, record):
        try:
            msg = self.format(record)
            self.logs.append(msg)
        except Exception:
            self.handleError(record)
            
    def get_logs(self):
        return "\n".join(self.logs)
        
    def clear(self):
        self.logs = []

# Initialize session state for storing execution history
if 'execution_history' not in st.session_state:
    st.session_state.execution_history = []

# Set up logging capture
log_capture = LogCaptureHandler()
log_capture.setFormatter(logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s'))

# Configure root logger
root_logger = logging.getLogger()
root_logger.setLevel(logging.INFO)
root_logger.addHandler(log_capture)

# Configure specific loggers
for logger_name in ['orchestrator', 'agents', 'services']:
    logger = logging.getLogger(logger_name)
    logger.setLevel(logging.INFO)
    logger.addHandler(log_capture)

load_dotenv()

st.set_page_config(page_title="PDF Field Extractor", layout="wide")

# Sidebar navigation
st.sidebar.title("Navigation")
page = st.sidebar.radio("Go to", ["Documentation", "Traces", "Execution"])

# Documentation Page
if page == "Documentation":
    st.title("Deep‑Research PDF Field Extractor")
    
    st.markdown("""
    ## Overview
    This system uses a multi-agent architecture to extract fields from PDFs with high accuracy and reliability.
    
    ### Core Components
    
    1. **Planner**
       - Generates execution plans using Azure OpenAI
       - Determines optimal extraction strategy
       - Manages task dependencies
    
    2. **Executor**
       - Executes the generated plan
       - Manages agent execution flow
       - Handles context and result management
    
    3. **Agents**
       - `TableAgent`: Extracts text and tables using Azure Document Intelligence
       - `FieldMapper`: Maps fields to values using extracted content
       - `ForEachField`: Controls field iteration flow
    
    ### Processing Pipeline
    
    1. **Document Processing**
       - Text and table extraction using Azure Document Intelligence
       - Layout and structure preservation
       - Support for complex document formats
    
    2. **Field Extraction**
       - Document type inference
       - User profile determination
       - Page-by-page scanning
       - Value extraction and validation
    
    3. **Context Building**
       - Document metadata
       - Field descriptions
       - User context
       - Execution history
    
    ### Key Features
    
    #### Smart Field Extraction
    - Two-step extraction strategy:
      1. Page-by-page scanning for precise extraction
      2. Semantic search fallback if no value found
    - Basic context awareness for improved extraction
    - Support for tabular data extraction
    
    #### Document Intelligence
    - Azure Document Intelligence integration
    - Layout and structure preservation
    - Table extraction and formatting
    - Complex document handling
    
    #### Execution Monitoring
    - Detailed execution traces
    - Success/failure status
    - Comprehensive logging
    - Result storage and retrieval
    
    ### Technical Requirements
    
    - Azure OpenAI API key
    - Azure Document Intelligence endpoint
    - Python 3.9 or higher
    - Required Python packages (see requirements.txt)
    
    ### Getting Started
    
    1. **Upload Your PDF**
       - Click the "Upload PDF" button
       - Select your PDF file
    
    2. **Specify Fields**
       - Enter comma-separated field names
       - Example: `Date, Name, Value, Location`
    
    3. **Optional: Add Field Descriptions**
       - Provide YAML-formatted field descriptions
       - Helps improve extraction accuracy
    
    4. **Run Extraction**
       - Click "Run extraction"
       - Monitor progress in execution trace
       - View results in table format
    
    5. **Download Results**
       - Export as CSV
       - View detailed execution logs
    
    ### Support
    
    For detailed technical documentation, please refer to:
    - [Architecture Overview](ARCHITECTURE.md)
    - [Developer Documentation](DEVELOPER.md)
    """)

# Traces Page
elif page == "Traces":
    st.title("Execution Traces")
    
    if not st.session_state.execution_history:
        st.info("No execution traces available yet. Run an extraction to see traces here.")
    else:
        # Create a DataFrame from the execution history
        history_data = []
        for record in st.session_state.execution_history:
            history_data.append({
                "filename": record["filename"],
                "datetime": record["datetime"],
                "fields": ", ".join(record.get("fields", [])),
                "logs": record.get("logs", []),
                "results": record.get("results", None)
            })
        
        history_df = pd.DataFrame(history_data)
        
        # Display column headers
        col1, col2, col3, col4, col5 = st.columns([2, 2, 3, 1, 1])
        with col1:
            st.markdown("**Filename**")
        with col2:
            st.markdown("**Timestamp**")
        with col3:
            st.markdown("**Fields**")
        with col4:
            st.markdown("**Logs**")
        with col5:
            st.markdown("**Results**")
        
        st.markdown("---")  # Add a separator line
        
        # Display the table with download buttons
        for idx, row in history_df.iterrows():
            col1, col2, col3, col4, col5 = st.columns([2, 2, 3, 1, 1])
            with col1:
                st.write(row["filename"])
            with col2:
                st.write(row["datetime"])
            with col3:
                st.write(row["fields"])
            with col4:
                if row["logs"]:  # Check if we have any logs
                    st.download_button(
                        "Download Logs",
                        row["logs"],  # Use the stored logs
                        file_name=f"logs_{row['filename']}_{row['datetime']}.txt",
                        key=f"logs_dl_{idx}"
                    )
                else:
                    st.write("No Logs")
            with col5:
                if row["results"] is not None:
                    results_df = pd.DataFrame(row["results"])
                    st.download_button(
                        "Download Results",
                        results_df.to_csv(index=False),
                        file_name=f"results_{row['filename']}_{row['datetime']}.csv",
                        key=f"results_dl_{idx}"
                    )
                else:
                    st.write("No Results")
            st.markdown("---")  # Add a separator line between rows

# Execution Page
else:  # page == "Execution"
    st.title("Deep‑Research PDF Field Extractor (POC)")

    pdf_file = st.file_uploader("Upload PDF", type=["pdf"])
    fields_str = st.text_input("Fields (comma‑separated)", "Protein Lot, Chain, Residue")
    desc_blob = st.text_area("Field descriptions / rules (YAML, optional)")

    # Add strategy selector
    strategy = st.radio(
        "Select Extraction Strategy",
        ["Original Strategy", "Unique Indices Strategy"],
        help="Original Strategy: Process document page by page. Unique Indices Strategy: Process entire document at once using unique indices."
    )

    # Add unique indices input if Unique Indices Strategy is selected
    unique_indices = None
    unique_indices_descriptions = None
    if strategy == "Unique Indices Strategy":
        unique_indices_str = st.text_input(
            "Unique Fields (comma-separated)",
            help="Enter the field names that uniquely identify each record (e.g., 'timepoint, Modification, peptide')"
        )
        if unique_indices_str:
            unique_indices = [idx.strip() for idx in unique_indices_str.split(",") if idx.strip()]
            
            # Add descriptions for each unique index
            st.subheader("Unique Fields Descriptions")
            st.markdown("""
            Please provide a description for each unique field. This helps the system better understand what to look for.
            Example:
            ```
            Protein Lot: Batch number of the Proteins
            Timepoint: Time at which modification was measured (e.g., 0w, 2w, 4w)
            Modification: Type of post-translational modification
            Peptide: Peptide sequence containing the modification
            ```
            """)
            unique_indices_descriptions_str = st.text_area(
                "Unique Fields Descriptions (YAML format)",
                help="Enter descriptions for each unique field in YAML format"
            )
            if unique_indices_descriptions_str:
                try:
                    unique_indices_descriptions = yaml.safe_load(unique_indices_descriptions_str)
                    if not isinstance(unique_indices_descriptions, dict):
                        st.error("Descriptions must be in YAML format with field names as keys")
                        unique_indices_descriptions = None
                except yaml.YAMLError as e:
                    st.error(f"Invalid YAML format: {e}")
                    unique_indices_descriptions = None

    def flatten_json_response(json_data, fields):
        """Flatten the nested JSON response into a tabular structure with dynamic columns."""
        logger = logging.getLogger(__name__)
        logger.info("Starting flatten_json_response")
        logger.info(f"Input fields: {fields}")
        
        # Handle the case where the response is a string
        if isinstance(json_data, str):
            logger.info("Input is a string, attempting to parse as JSON")
            try:
                json_data = json.loads(json_data)
                logger.info("Successfully parsed JSON string")
            except json.JSONDecodeError as e:
                logger.error(f"Failed to parse JSON string: {e}")
                return pd.DataFrame(columns=fields)
        
        # If the data is wrapped in an array, get the first item
        if isinstance(json_data, list) and len(json_data) > 0:
            logger.info("Data is wrapped in an array, extracting first item")
            json_data = json_data[0]
        
        # If the data is a dictionary with numeric keys, get the first value
        if isinstance(json_data, dict):
            keys = list(json_data.keys())
            logger.info(f"Checking dictionary keys: {keys}")
            # Check if all keys are integers or string representations of integers
            if all(isinstance(k, int) or (isinstance(k, str) and k.isdigit()) for k in keys):
                logger.info("Data has numeric keys, extracting first value")
                first_key = sorted(keys, key=lambda x: int(x) if isinstance(x, str) else x)[0]
                json_data = json_data[first_key]
                logger.info(f"Extracted data from key '{first_key}'")
        
        logger.info(f"JSON data keys: {list(json_data.keys()) if isinstance(json_data, dict) else 'Not a dict'}")
        
        # Create a list to store rows
        rows = []
        
        # Get the length of the first array to determine number of rows
        if isinstance(json_data, dict) and len(json_data) > 0:
            first_field = list(json_data.keys())[0]
            num_rows = len(json_data[first_field]) if isinstance(json_data[first_field], list) else 1
            logger.info(f"Number of rows to process: {num_rows}")
            
            # Create a row for each index
            for i in range(num_rows):
                logger.debug(f"Processing row {i}")
                row = {}
                for field in fields:
                    if field in json_data and isinstance(json_data[field], list) and i < len(json_data[field]):
                        row[field] = json_data[field][i]
                        logger.debug(f"Field '{field}' value at index {i}: {json_data[field][i]}")
                    else:
                        row[field] = None
                        logger.debug(f"Field '{field}' not found or index {i} out of bounds")
                rows.append(row)
        else:
            logger.error(f"Unexpected data structure: {type(json_data)}")
            return pd.DataFrame(columns=fields)
        
        # Create DataFrame with all requested fields as columns
        df = pd.DataFrame(rows)
        logger.info(f"Created DataFrame with shape: {df.shape}")
        logger.info(f"DataFrame columns: {df.columns.tolist()}")
        
        # Ensure columns are in the same order as the fields list
        df = df[fields]
        logger.info(f"Final DataFrame columns after reordering: {df.columns.tolist()}")
        
        return df

    if st.button("Run extraction") and pdf_file:
        field_list = [f.strip() for f in fields_str.split(",") if f.strip()]
        field_descs = yaml.safe_load(desc_blob) if desc_blob.strip() else {}

        try:
            with st.spinner("Planning …"):
                # quick first-page text preview to give LLM document context
                doc = fitz.open(stream=pdf_file.getvalue(), filetype="pdf")  # type: ignore[arg-type]
                preview = "\n".join(page.get_text() for page in doc[:10])[:20000]  # first 2 pages, 2k chars

                # Create a cost tracker for this run
                cost_tracker = CostTracker()

                planner = Planner(cost_tracker=cost_tracker)
                plan = planner.build_plan(
                    pdf_meta={"filename": pdf_file.name},
                    doc_preview=preview,
                    fields=field_list,
                    field_descs=field_descs,
                    strategy=strategy,
                    unique_indices=unique_indices,
                    unique_indices_descriptions=unique_indices_descriptions
                )
                
                # Add a visual separator
                st.markdown("---")

            with st.spinner("Executing …"):
                executor = Executor(settings=settings, cost_tracker=cost_tracker)
                results, logs = executor.run(plan, pdf_file)

                # Get detailed costs
                costs = executor.cost_tracker.calculate_current_file_costs()
                model_cost = costs["openai"]["total_cost"]
                di_cost = costs["document_intelligence"]["total_cost"]

                # Display detailed costs table
                st.subheader("Detailed Costs")
                costs_df = executor.cost_tracker.get_detailed_costs_table()
                st.dataframe(costs_df, use_container_width=True)

                st.info(
                    f"LLM input tokens: {executor.cost_tracker.llm_input_tokens}, "
                    f"LLM output tokens: {executor.cost_tracker.llm_output_tokens}, "
                    f"DI pages: {executor.cost_tracker.di_pages}, "
                    f"Model cost: ${model_cost:.4f}, "
                    f"DI cost: ${di_cost:.4f}, "
                    f"Total cost: ${model_cost + di_cost:.4f}"
                )

                # Add detailed logging about what executor returned
                logger.info(f"Executor returned results of type: {type(results)}")
                logger.info(f"Results content: {results}")
                
                # Check if results is already a DataFrame
                if isinstance(results, pd.DataFrame):
                    logger.info(f"Results is already a DataFrame with shape: {results.shape}")
                    logger.info(f"DataFrame columns: {results.columns.tolist()}")
                    logger.info(f"DataFrame head: {results.head()}")
                    df = results
                else:
                    logger.info("Results is not a DataFrame, calling flatten_json_response")
                    # Process results using flatten_json_response
                    df = flatten_json_response(results, field_list)
                
                # Log final DataFrame info
                logger.info(f"Final DataFrame shape: {df.shape}")
                logger.info(f"Final DataFrame columns: {df.columns.tolist()}")
                if not df.empty:
                    logger.info(f"Final DataFrame sample: {df.head()}")

                # Store execution in history
                execution_record = {
                    "filename": pdf_file.name,
                    "datetime": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
                    "fields": field_list,
                    "logs": log_capture.get_logs(),  # Store the actual logs
                    "results": df.to_dict() if not df.empty else None
                }
                st.session_state.execution_history.append(execution_record)
                log_capture.clear()  # Clear logs after storing them

            # ----------------- UI: show execution tree -----------------
            st.subheader("Execution trace")
            for log in logs:
                indent = "&nbsp;" * 4 * log["depth"]
                # Add error indicator if there was an error
                error_indicator = "❌ " if log.get("error") else "✓ "
                # Use a fixed preview text instead of the result
                with st.expander(f"{indent}{error_indicator}{log['tool']} – Click to view result"):
                    st.markdown(f"**Args**: `{log['args']}`", unsafe_allow_html=True)
                    if log.get("error"):
                        st.error(f"Error: {log['error']}")
                    
                    # Special handling for IndexAgent output
                    if log['tool'] == "IndexAgent" and isinstance(log["result"], dict):
                        # Display chunk statistics if available
                        if "chunk_stats" in log["result"]:
                            st.markdown("### Chunk Statistics")
                            # Create a DataFrame for better visualization
                            stats_df = pd.DataFrame(log["result"]["chunk_stats"])
                            st.dataframe(stats_df)
                            
                            # Add summary statistics
                            st.markdown("### Summary")
                            st.markdown(f"""
                            - Total chunks: {len(stats_df)}
                            - Average chunk length: {stats_df['length'].mean():.0f} characters
                            - Shortest chunk: {stats_df['length'].min()} characters
                            - Longest chunk: {stats_df['length'].max()} characters
                            """)
                            
                            # Add a bar chart of chunk lengths
                            st.markdown("### Chunk Length Distribution")
                            st.bar_chart(stats_df.set_index('chunk_number')['length'])
                    else:
                        st.code(log["result"])

            if not df.empty:
                st.success("Done ✓")
                st.dataframe(df)
                st.download_button("Download CSV", df.to_csv(index=False), "results.csv")
            else:
                st.warning("No results were extracted. Check the execution trace for errors.")
        except Exception as e:
            logging.exception("App error:")
            st.error(f"An error occurred: {e}")