Spaces:
Running
Running
File size: 20,017 Bytes
0a40afa 966ffcd 0a40afa 2eac01a 0a40afa 2eac01a 0a40afa 2eac01a 0a40afa 924cb7d f98e92f 924cb7d f98e92f 924cb7d 0a40afa 966ffcd 0a40afa 924cb7d f98e92f 0a40afa 966ffcd 0a40afa 966ffcd 0a40afa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 |
"""Streamlit front‑end entry‑point."""
import yaml
import json
import streamlit as st
import logging
from dotenv import load_dotenv
from orchestrator.planner import Planner
from orchestrator.executor import Executor
from config.settings import settings
import fitz # PyMuPDF local import to avoid heavy load on startup
import pandas as pd
from datetime import datetime
from services.cost_tracker import CostTracker
# Create a custom stream handler to capture logs
class LogCaptureHandler(logging.StreamHandler):
def __init__(self):
super().__init__()
self.logs = []
def emit(self, record):
try:
msg = self.format(record)
self.logs.append(msg)
except Exception:
self.handleError(record)
def get_logs(self):
return "\n".join(self.logs)
def clear(self):
self.logs = []
# Initialize session state for storing execution history
if 'execution_history' not in st.session_state:
st.session_state.execution_history = []
# Set up logging capture
log_capture = LogCaptureHandler()
log_capture.setFormatter(logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s'))
# Configure root logger
root_logger = logging.getLogger()
root_logger.setLevel(logging.INFO)
root_logger.addHandler(log_capture)
# Configure specific loggers
for logger_name in ['orchestrator', 'agents', 'services']:
logger = logging.getLogger(logger_name)
logger.setLevel(logging.INFO)
logger.addHandler(log_capture)
load_dotenv()
st.set_page_config(page_title="PDF Field Extractor", layout="wide")
# Sidebar navigation
st.sidebar.title("Navigation")
page = st.sidebar.radio("Go to", ["Documentation", "Traces", "Execution"])
# Documentation Page
if page == "Documentation":
st.title("Deep‑Research PDF Field Extractor")
st.markdown("""
## Overview
This system uses a multi-agent architecture to extract fields from PDFs with high accuracy and reliability.
### Core Components
1. **Planner**
- Generates execution plans using Azure OpenAI
- Determines optimal extraction strategy
- Manages task dependencies
2. **Executor**
- Executes the generated plan
- Manages agent execution flow
- Handles context and result management
3. **Agents**
- `TableAgent`: Extracts text and tables using Azure Document Intelligence
- `FieldMapper`: Maps fields to values using extracted content
- `ForEachField`: Controls field iteration flow
### Processing Pipeline
1. **Document Processing**
- Text and table extraction using Azure Document Intelligence
- Layout and structure preservation
- Support for complex document formats
2. **Field Extraction**
- Document type inference
- User profile determination
- Page-by-page scanning
- Value extraction and validation
3. **Context Building**
- Document metadata
- Field descriptions
- User context
- Execution history
### Key Features
#### Smart Field Extraction
- Two-step extraction strategy:
1. Page-by-page scanning for precise extraction
2. Semantic search fallback if no value found
- Basic context awareness for improved extraction
- Support for tabular data extraction
#### Document Intelligence
- Azure Document Intelligence integration
- Layout and structure preservation
- Table extraction and formatting
- Complex document handling
#### Execution Monitoring
- Detailed execution traces
- Success/failure status
- Comprehensive logging
- Result storage and retrieval
### Technical Requirements
- Azure OpenAI API key
- Azure Document Intelligence endpoint
- Python 3.9 or higher
- Required Python packages (see requirements.txt)
### Getting Started
1. **Upload Your PDF**
- Click the "Upload PDF" button
- Select your PDF file
2. **Specify Fields**
- Enter comma-separated field names
- Example: `Date, Name, Value, Location`
3. **Optional: Add Field Descriptions**
- Provide YAML-formatted field descriptions
- Helps improve extraction accuracy
4. **Run Extraction**
- Click "Run extraction"
- Monitor progress in execution trace
- View results in table format
5. **Download Results**
- Export as CSV
- View detailed execution logs
### Support
For detailed technical documentation, please refer to:
- [Architecture Overview](ARCHITECTURE.md)
- [Developer Documentation](DEVELOPER.md)
""")
# Traces Page
elif page == "Traces":
st.title("Execution Traces")
if not st.session_state.execution_history:
st.info("No execution traces available yet. Run an extraction to see traces here.")
else:
# Create a DataFrame from the execution history
history_data = []
for record in st.session_state.execution_history:
history_data.append({
"filename": record["filename"],
"datetime": record["datetime"],
"fields": ", ".join(record.get("fields", [])),
"logs": record.get("logs", []),
"results": record.get("results", None)
})
history_df = pd.DataFrame(history_data)
# Display column headers
col1, col2, col3, col4, col5 = st.columns([2, 2, 3, 1, 1])
with col1:
st.markdown("**Filename**")
with col2:
st.markdown("**Timestamp**")
with col3:
st.markdown("**Fields**")
with col4:
st.markdown("**Logs**")
with col5:
st.markdown("**Results**")
st.markdown("---") # Add a separator line
# Display the table with download buttons
for idx, row in history_df.iterrows():
col1, col2, col3, col4, col5 = st.columns([2, 2, 3, 1, 1])
with col1:
st.write(row["filename"])
with col2:
st.write(row["datetime"])
with col3:
st.write(row["fields"])
with col4:
if row["logs"]: # Check if we have any logs
st.download_button(
"Download Logs",
row["logs"], # Use the stored logs
file_name=f"logs_{row['filename']}_{row['datetime']}.txt",
key=f"logs_dl_{idx}"
)
else:
st.write("No Logs")
with col5:
if row["results"] is not None:
results_df = pd.DataFrame(row["results"])
st.download_button(
"Download Results",
results_df.to_csv(index=False),
file_name=f"results_{row['filename']}_{row['datetime']}.csv",
key=f"results_dl_{idx}"
)
else:
st.write("No Results")
st.markdown("---") # Add a separator line between rows
# Execution Page
else: # page == "Execution"
st.title("Deep‑Research PDF Field Extractor (POC)")
pdf_file = st.file_uploader("Upload PDF", type=["pdf"])
fields_str = st.text_input("Fields (comma‑separated)", "Protein Lot, Chain, Residue")
desc_blob = st.text_area("Field descriptions / rules (YAML, optional)")
# Add strategy selector
strategy = st.radio(
"Select Extraction Strategy",
["Original Strategy", "Unique Indices Strategy"],
help="Original Strategy: Process document page by page. Unique Indices Strategy: Process entire document at once using unique indices."
)
# Add unique indices input if Unique Indices Strategy is selected
unique_indices = None
unique_indices_descriptions = None
if strategy == "Unique Indices Strategy":
unique_indices_str = st.text_input(
"Unique Fields (comma-separated)",
help="Enter the field names that uniquely identify each record (e.g., 'timepoint, Modification, peptide')"
)
if unique_indices_str:
unique_indices = [idx.strip() for idx in unique_indices_str.split(",") if idx.strip()]
# Add descriptions for each unique index
st.subheader("Unique Fields Descriptions")
st.markdown("""
Please provide a description for each unique field. This helps the system better understand what to look for.
Example:
```
Protein Lot: Batch number of the Proteins
Timepoint: Time at which modification was measured (e.g., 0w, 2w, 4w)
Modification: Type of post-translational modification
Peptide: Peptide sequence containing the modification
```
""")
unique_indices_descriptions_str = st.text_area(
"Unique Fields Descriptions (YAML format)",
help="Enter descriptions for each unique field in YAML format"
)
if unique_indices_descriptions_str:
try:
unique_indices_descriptions = yaml.safe_load(unique_indices_descriptions_str)
if not isinstance(unique_indices_descriptions, dict):
st.error("Descriptions must be in YAML format with field names as keys")
unique_indices_descriptions = None
except yaml.YAMLError as e:
st.error(f"Invalid YAML format: {e}")
unique_indices_descriptions = None
def flatten_json_response(json_data, fields):
"""Flatten the nested JSON response into a tabular structure with dynamic columns."""
logger = logging.getLogger(__name__)
logger.info("Starting flatten_json_response")
logger.info(f"Input fields: {fields}")
# Handle the case where the response is a string
if isinstance(json_data, str):
logger.info("Input is a string, attempting to parse as JSON")
try:
json_data = json.loads(json_data)
logger.info("Successfully parsed JSON string")
except json.JSONDecodeError as e:
logger.error(f"Failed to parse JSON string: {e}")
return pd.DataFrame(columns=fields)
# If the data is wrapped in an array, get the first item
if isinstance(json_data, list) and len(json_data) > 0:
logger.info("Data is wrapped in an array, extracting first item")
json_data = json_data[0]
# If the data is a dictionary with numeric keys, get the first value
if isinstance(json_data, dict):
keys = list(json_data.keys())
logger.info(f"Checking dictionary keys: {keys}")
# Check if all keys are integers or string representations of integers
if all(isinstance(k, int) or (isinstance(k, str) and k.isdigit()) for k in keys):
logger.info("Data has numeric keys, extracting first value")
first_key = sorted(keys, key=lambda x: int(x) if isinstance(x, str) else x)[0]
json_data = json_data[first_key]
logger.info(f"Extracted data from key '{first_key}'")
logger.info(f"JSON data keys: {list(json_data.keys()) if isinstance(json_data, dict) else 'Not a dict'}")
# Create a list to store rows
rows = []
# Get the length of the first array to determine number of rows
if isinstance(json_data, dict) and len(json_data) > 0:
first_field = list(json_data.keys())[0]
num_rows = len(json_data[first_field]) if isinstance(json_data[first_field], list) else 1
logger.info(f"Number of rows to process: {num_rows}")
# Create a row for each index
for i in range(num_rows):
logger.debug(f"Processing row {i}")
row = {}
for field in fields:
if field in json_data and isinstance(json_data[field], list) and i < len(json_data[field]):
row[field] = json_data[field][i]
logger.debug(f"Field '{field}' value at index {i}: {json_data[field][i]}")
else:
row[field] = None
logger.debug(f"Field '{field}' not found or index {i} out of bounds")
rows.append(row)
else:
logger.error(f"Unexpected data structure: {type(json_data)}")
return pd.DataFrame(columns=fields)
# Create DataFrame with all requested fields as columns
df = pd.DataFrame(rows)
logger.info(f"Created DataFrame with shape: {df.shape}")
logger.info(f"DataFrame columns: {df.columns.tolist()}")
# Ensure columns are in the same order as the fields list
df = df[fields]
logger.info(f"Final DataFrame columns after reordering: {df.columns.tolist()}")
return df
if st.button("Run extraction") and pdf_file:
field_list = [f.strip() for f in fields_str.split(",") if f.strip()]
field_descs = yaml.safe_load(desc_blob) if desc_blob.strip() else {}
try:
with st.spinner("Planning …"):
# quick first-page text preview to give LLM document context
doc = fitz.open(stream=pdf_file.getvalue(), filetype="pdf") # type: ignore[arg-type]
preview = "\n".join(page.get_text() for page in doc[:10])[:20000] # first 2 pages, 2k chars
# Create a cost tracker for this run
cost_tracker = CostTracker()
planner = Planner(cost_tracker=cost_tracker)
plan = planner.build_plan(
pdf_meta={"filename": pdf_file.name},
doc_preview=preview,
fields=field_list,
field_descs=field_descs,
strategy=strategy,
unique_indices=unique_indices,
unique_indices_descriptions=unique_indices_descriptions
)
# Add a visual separator
st.markdown("---")
with st.spinner("Executing …"):
executor = Executor(settings=settings, cost_tracker=cost_tracker)
results, logs = executor.run(plan, pdf_file)
# Get detailed costs
costs = executor.cost_tracker.calculate_current_file_costs()
model_cost = costs["openai"]["total_cost"]
di_cost = costs["document_intelligence"]["total_cost"]
# Display detailed costs table
st.subheader("Detailed Costs")
costs_df = executor.cost_tracker.get_detailed_costs_table()
st.dataframe(costs_df, use_container_width=True)
st.info(
f"LLM input tokens: {executor.cost_tracker.llm_input_tokens}, "
f"LLM output tokens: {executor.cost_tracker.llm_output_tokens}, "
f"DI pages: {executor.cost_tracker.di_pages}, "
f"Model cost: ${model_cost:.4f}, "
f"DI cost: ${di_cost:.4f}, "
f"Total cost: ${model_cost + di_cost:.4f}"
)
# Add detailed logging about what executor returned
logger.info(f"Executor returned results of type: {type(results)}")
logger.info(f"Results content: {results}")
# Check if results is already a DataFrame
if isinstance(results, pd.DataFrame):
logger.info(f"Results is already a DataFrame with shape: {results.shape}")
logger.info(f"DataFrame columns: {results.columns.tolist()}")
logger.info(f"DataFrame head: {results.head()}")
df = results
else:
logger.info("Results is not a DataFrame, calling flatten_json_response")
# Process results using flatten_json_response
df = flatten_json_response(results, field_list)
# Log final DataFrame info
logger.info(f"Final DataFrame shape: {df.shape}")
logger.info(f"Final DataFrame columns: {df.columns.tolist()}")
if not df.empty:
logger.info(f"Final DataFrame sample: {df.head()}")
# Store execution in history
execution_record = {
"filename": pdf_file.name,
"datetime": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"fields": field_list,
"logs": log_capture.get_logs(), # Store the actual logs
"results": df.to_dict() if not df.empty else None
}
st.session_state.execution_history.append(execution_record)
log_capture.clear() # Clear logs after storing them
# ----------------- UI: show execution tree -----------------
st.subheader("Execution trace")
for log in logs:
indent = " " * 4 * log["depth"]
# Add error indicator if there was an error
error_indicator = "❌ " if log.get("error") else "✓ "
# Use a fixed preview text instead of the result
with st.expander(f"{indent}{error_indicator}{log['tool']} – Click to view result"):
st.markdown(f"**Args**: `{log['args']}`", unsafe_allow_html=True)
if log.get("error"):
st.error(f"Error: {log['error']}")
# Special handling for IndexAgent output
if log['tool'] == "IndexAgent" and isinstance(log["result"], dict):
# Display chunk statistics if available
if "chunk_stats" in log["result"]:
st.markdown("### Chunk Statistics")
# Create a DataFrame for better visualization
stats_df = pd.DataFrame(log["result"]["chunk_stats"])
st.dataframe(stats_df)
# Add summary statistics
st.markdown("### Summary")
st.markdown(f"""
- Total chunks: {len(stats_df)}
- Average chunk length: {stats_df['length'].mean():.0f} characters
- Shortest chunk: {stats_df['length'].min()} characters
- Longest chunk: {stats_df['length'].max()} characters
""")
# Add a bar chart of chunk lengths
st.markdown("### Chunk Length Distribution")
st.bar_chart(stats_df.set_index('chunk_number')['length'])
else:
st.code(log["result"])
if not df.empty:
st.success("Done ✓")
st.dataframe(df)
st.download_button("Download CSV", df.to_csv(index=False), "results.csv")
else:
st.warning("No results were extracted. Check the execution trace for errors.")
except Exception as e:
logging.exception("App error:")
st.error(f"An error occurred: {e}") |