## Imports import pickle import warnings import streamlit as st from pathlib import Path import numpy as np import pandas as pd import matplotlib.pyplot as plt import datetime # import torch from torch.distributions import Normal from pytorch_forecasting import ( TimeSeriesDataSet, TemporalFusionTransformer, ) ## Functions def raw_preds_to_df(raw,quantiles = None): """ raw is output of model.predict with return_index=True quantiles can be provided like [0.1,0.5,0.9] to get interpretable quantiles in the output, time_idx is the first prediction time index (one step after knowledge cutoff) pred_idx the index of the predicted date i.e. time_idx + h - 1 """ index = raw[2] preds = raw[0].prediction dec_len = preds.shape[1] n_quantiles = preds.shape[-1] preds_df = pd.DataFrame(index.values.repeat(dec_len * n_quantiles, axis=0),columns=index.columns) preds_df = preds_df.assign(h=np.tile(np.repeat(np.arange(1,1+dec_len),n_quantiles),len(preds_df)//(dec_len*n_quantiles))) preds_df = preds_df.assign(q=np.tile(np.arange(n_quantiles),len(preds_df)//n_quantiles)) preds_df = preds_df.assign(pred=preds.flatten().cpu().numpy()) if quantiles is not None: preds_df['q'] = preds_df['q'].map({i:q for i,q in enumerate(quantiles)}) preds_df['pred_idx'] = preds_df['time_idx'] + preds_df['h'] - 1 return preds_df def prepare_dataset(parameters, df, rain, temperature, datepicker): if rain != "Default": df["MTXWTH_Day_precip"] = rain_mapping[rain] df["MTXWTH_Temp_min"] = df["MTXWTH_Temp_min"] + temperature df["MTXWTH_Temp_max"] = df["MTXWTH_Temp_max"] + temperature lowerbound = datepicker - datetime.timedelta(days = 35) upperbound = datepicker + datetime.timedelta(days = 30) df = df.loc[(df["Date"]>lowerbound) & (df["Date"]<=upperbound)] df = TimeSeriesDataSet.from_parameters(parameters, df) return df.to_dataloader(train=False, batch_size=256,num_workers = 0) def predict(model, dataloader): return model.predict(dataloader, mode="raw", return_x=True, return_index=True) ## Initiate Data with open('data/parameters.pkl', 'rb') as f: parameters = pickle.load(f) model = TemporalFusionTransformer.load_from_checkpoint('model/tft_check.ckpt', map_location=torch.device('cpu')) df = pd.read_pickle('data/test_data.pkl') df = df.loc[(df["Branch"] == 15) & (df["Group"].isin(["6","7","4","1"]))] rain_mapping = { "Yes" : 1, "No" : 0 } # Start App st.title("Temporal Fusion Transformers for Interpretable Multi-horizon Time Series Forecasting") st.markdown(body = """ ### Abstract Multi-horizon forecasting often contains a complex mix of inputs – including static (i.e. time-invariant) covariates, known future inputs, and other exogenous time series that are only observed in the past – without any prior information on how they interact with the target. Several deep learning methods have been proposed, but they are typically ‘black-box’ models which do not shed light on how they use the full range of inputs present in practical scenarios. In this pa- per, we introduce the Temporal Fusion Transformer (TFT) – a novel attention- based architecture which combines high-performance multi-horizon forecasting with interpretable insights into temporal dynamics. To learn temporal rela- tionships at different scales, TFT uses recurrent layers for local processing and interpretable self-attention layers for long-term dependencies. TFT utilizes spe- cialized components to select relevant features and a series of gating layers to suppress unnecessary components, enabling high performance in a wide range of scenarios. On a variety of real-world datasets, we demonstrate significant per- formance improvements over existing benchmarks, and showcase three practical interpretability use cases of TFT. """) rain = st.radio("Rain Indicator", ('Default', 'Yes', 'No')) temperature = st.slider('Change in Temperature', min_value=-10, max_value=+10, value=0, step=0.25) datepicker = st.date_input("Start of Forecast", datetime.date(2022, 12, 24), min_value=datetime.date(2022, 6, 26) + datetime.timedelta(days = 35), max_value=datetime.date(2023, 6, 26) - datetime.timedelta(days = 30)) arr = np.random.normal(1, 1, size=100) fig, ax = plt.subplots() ax.hist(arr, bins=20) st.pyplot(fig) st.button("Forecast Sales", type="primary") #on_click=None, # %% preds = raw_preds_to_df(out, quantiles = None) preds = preds.merge(data_selected[['time_idx','Group','Branch','sales','weight','Date','MTXWTH_Day_precip','MTXWTH_Temp_max','MTXWTH_Temp_min']],how='left',left_on=['pred_idx','Group','Branch'],right_on=['time_idx','Group','Branch']) preds.rename(columns={'time_idx_x':'time_idx'},inplace=True) preds.drop(columns=['time_idx_y'],inplace=True)