Spaces:
Runtime error
Runtime error
bug fix
Browse files
app.py
CHANGED
@@ -70,7 +70,6 @@ def update_plot(df, preds, axs, fig):
|
|
70 |
axs[1, 1].plot(df.loc[df['Group'] == '6', 'Date'], df.loc[df['Group'] == '4', 'pred'], color = 'red')
|
71 |
return fig, axs
|
72 |
|
73 |
-
@st.cache_resource
|
74 |
def generate_plot(df):
|
75 |
fig, axs = plt.subplots(2, 2, figsize=(8, 6))
|
76 |
df["sales"] = df["sales"].replace(0.0, np.nan)
|
@@ -135,18 +134,17 @@ def main():
|
|
135 |
|
136 |
### Experiments
|
137 |
""")
|
138 |
-
rain = st.radio("Rain Indicator", ('Default', 'Yes', 'No'))
|
139 |
|
140 |
-
temperature = st.slider('Change in Temperature', min_value=-10.0, max_value=10.0, value=0.0, step=0.25)
|
141 |
|
142 |
-
datepicker = st.date_input("Start of Forecast", datetime.date(2022, 10, 24), min_value=datetime.date(2022, 6, 26) + datetime.timedelta(days = 35), max_value=datetime.date(2023, 6, 26) - datetime.timedelta(days = 30))
|
143 |
|
144 |
fig, axs = generate_plot(df.copy())
|
145 |
-
|
146 |
st.pyplot(fig)
|
147 |
|
148 |
if st.button("Forecast Sales", type="primary"):
|
149 |
-
dataloader = prepare_dataset(parameters, df.copy(), rain, temperature,
|
150 |
preds = predict(model, dataloader, datepicker)
|
151 |
update_plot(df, preds, axs, fig)
|
152 |
|
|
|
70 |
axs[1, 1].plot(df.loc[df['Group'] == '6', 'Date'], df.loc[df['Group'] == '4', 'pred'], color = 'red')
|
71 |
return fig, axs
|
72 |
|
|
|
73 |
def generate_plot(df):
|
74 |
fig, axs = plt.subplots(2, 2, figsize=(8, 6))
|
75 |
df["sales"] = df["sales"].replace(0.0, np.nan)
|
|
|
134 |
|
135 |
### Experiments
|
136 |
""")
|
137 |
+
rain = st.radio("Rain Indicator", ('Default', 'Yes', 'No'), key = "rain")
|
138 |
|
139 |
+
temperature = st.slider('Change in Temperature', min_value=-10.0, max_value=10.0, value=0.0, step=0.25, key = "temperature")
|
140 |
|
141 |
+
datepicker = st.date_input("Start of Forecast", datetime.date(2022, 10, 24), min_value=datetime.date(2022, 6, 26) + datetime.timedelta(days = 35), max_value=datetime.date(2023, 6, 26) - datetime.timedelta(days = 30), key = "date")
|
142 |
|
143 |
fig, axs = generate_plot(df.copy())
|
|
|
144 |
st.pyplot(fig)
|
145 |
|
146 |
if st.button("Forecast Sales", type="primary"):
|
147 |
+
dataloader = prepare_dataset(parameters, df.copy(), st.session_state.rain, st.session_state.temperature, st.session_state.date, rain_mapping)
|
148 |
preds = predict(model, dataloader, datepicker)
|
149 |
update_plot(df, preds, axs, fig)
|
150 |
|