leuschnm commited on
Commit
d4339fa
·
1 Parent(s): 3244c47
Files changed (1) hide show
  1. app.py +2 -25
app.py CHANGED
@@ -70,6 +70,7 @@ def update_plot(df, preds, axs, fig):
70
  axs[1, 1].plot(df.loc[df['Group'] == '6', 'Date'], df.loc[df['Group'] == '4', 'pred'], color = 'red')
71
  return fig, axs
72
 
 
73
  def generate_plot(df):
74
  fig, axs = plt.subplots(2, 2, figsize=(8, 6))
75
  df["sales"] = df["sales"].replace(0.0, np.nan)
@@ -141,37 +142,13 @@ def main():
141
  datepicker = st.date_input("Start of Forecast", datetime.date(2022, 10, 24), min_value=datetime.date(2022, 6, 26) + datetime.timedelta(days = 35), max_value=datetime.date(2023, 6, 26) - datetime.timedelta(days = 30), key = "date")
142
 
143
  fig, axs = generate_plot(df.copy())
144
- st.pyplot(fig)
145
 
146
  if st.button("Forecast Sales", type="primary"):
147
  dataloader = prepare_dataset(parameters, df.copy(), st.session_state.rain, st.session_state.temperature, st.session_state.date, rain_mapping)
148
  preds = predict(model, dataloader, st.session_state.date)
149
  update_plot(df, preds, axs, fig)
150
 
151
-
152
- #st.cache_data(allow_output_mutation=True)
153
- def create_plot():
154
- fig, ax = plt.subplots()
155
- x_initial = np.linspace(0, 2*np.pi, 100)
156
- y_initial = np.cos(x_initial)
157
- ax.plot(x_initial, y_initial, label='Initial Line')
158
- ax.set_xlabel('X-axis')
159
- ax.set_ylabel('Y-axis')
160
- ax.set_title('Plot')
161
- ax.legend()
162
- return fig
163
-
164
- fig = create_plot()
165
- st.pyplot(fig)
166
-
167
- if st.button('Add Line'):
168
- ax = fig.axes[0]
169
- x_new = np.linspace(0, 2*np.pi, 100)
170
- y_new = np.sin(x_new)
171
- ax.plot(x_new, y_new, label='New Line')
172
- ax.legend()
173
- st.pyplot(fig)
174
-
175
 
176
 
177
  if __name__ == '__main__':
 
70
  axs[1, 1].plot(df.loc[df['Group'] == '6', 'Date'], df.loc[df['Group'] == '4', 'pred'], color = 'red')
71
  return fig, axs
72
 
73
+ #@st.cache_resource(
74
  def generate_plot(df):
75
  fig, axs = plt.subplots(2, 2, figsize=(8, 6))
76
  df["sales"] = df["sales"].replace(0.0, np.nan)
 
142
  datepicker = st.date_input("Start of Forecast", datetime.date(2022, 10, 24), min_value=datetime.date(2022, 6, 26) + datetime.timedelta(days = 35), max_value=datetime.date(2023, 6, 26) - datetime.timedelta(days = 30), key = "date")
143
 
144
  fig, axs = generate_plot(df.copy())
145
+ st.pyplot(fig, key="plot")
146
 
147
  if st.button("Forecast Sales", type="primary"):
148
  dataloader = prepare_dataset(parameters, df.copy(), st.session_state.rain, st.session_state.temperature, st.session_state.date, rain_mapping)
149
  preds = predict(model, dataloader, st.session_state.date)
150
  update_plot(df, preds, axs, fig)
151
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
152
 
153
 
154
  if __name__ == '__main__':