Spaces:
Runtime error
Runtime error
bug fix
Browse files
app.py
CHANGED
@@ -59,10 +59,10 @@ def predict(_model, _dataloader, datepicker):
|
|
59 |
preds = raw_preds_to_df(out, quantiles = None)
|
60 |
return preds[["pred_idx", "Group", "pred"]]
|
61 |
|
62 |
-
def update_plot(df, preds):
|
63 |
df = pd.merge(df, preds, left_on=["time_idx", "Group"], right_on=["pred_idx", "Group"], how = "left")
|
64 |
df = df[~df["pred"].isna()]
|
65 |
-
|
66 |
|
67 |
axs[0, 0].plot(df.loc[df['Group'] == '4', 'Date'], df.loc[df['Group'] == '4', 'pred'], color = 'red')
|
68 |
axs[0, 1].plot(df.loc[df['Group'] == '7', 'Date'], df.loc[df['Group'] == '4', 'pred'], color = 'red')
|
@@ -73,7 +73,7 @@ def update_plot(df, preds):
|
|
73 |
@st.cache_resource
|
74 |
def generate_plot(df):
|
75 |
fig, axs = plt.subplots(2, 2, figsize=(8, 6))
|
76 |
-
|
77 |
# Plot scatter plots for each group
|
78 |
axs[0, 0].plot(df.loc[df['Group'] == '4', 'Date'], df.loc[df['Group'] == '4', 'sales'], color='grey')
|
79 |
|
@@ -87,7 +87,7 @@ def generate_plot(df):
|
|
87 |
axs[1, 1].plot(df.loc[df['Group'] == '6', 'Date'], df.loc[df['Group'] == '6', 'sales'], color='grey')
|
88 |
axs[1, 1].set_title('Article Group 4')
|
89 |
plt.tight_layout()
|
90 |
-
|
91 |
|
92 |
@st.cache_data
|
93 |
def load_data():
|
@@ -142,12 +142,14 @@ def main():
|
|
142 |
|
143 |
datepicker = st.date_input("Start of Forecast", datetime.date(2022, 10, 24), min_value=datetime.date(2022, 6, 26) + datetime.timedelta(days = 35), max_value=datetime.date(2023, 6, 26) - datetime.timedelta(days = 30))
|
144 |
|
145 |
-
generate_plot(df)
|
|
|
|
|
146 |
|
147 |
if st.button("Forecast Sales", type="primary"):
|
148 |
dataloader = prepare_dataset(parameters, df.copy(), rain, temperature, datepicker, rain_mapping)
|
149 |
preds = predict(model, dataloader, datepicker)
|
150 |
-
update_plot(df, preds)
|
151 |
|
152 |
if __name__ == '__main__':
|
153 |
main()
|
|
|
59 |
preds = raw_preds_to_df(out, quantiles = None)
|
60 |
return preds[["pred_idx", "Group", "pred"]]
|
61 |
|
62 |
+
def update_plot(df, preds, axs):
|
63 |
df = pd.merge(df, preds, left_on=["time_idx", "Group"], right_on=["pred_idx", "Group"], how = "left")
|
64 |
df = df[~df["pred"].isna()]
|
65 |
+
df[["sales", "pred"]] = df[["sales", "pred"]].replace(0.0, np.nan)
|
66 |
|
67 |
axs[0, 0].plot(df.loc[df['Group'] == '4', 'Date'], df.loc[df['Group'] == '4', 'pred'], color = 'red')
|
68 |
axs[0, 1].plot(df.loc[df['Group'] == '7', 'Date'], df.loc[df['Group'] == '4', 'pred'], color = 'red')
|
|
|
73 |
@st.cache_resource
|
74 |
def generate_plot(df):
|
75 |
fig, axs = plt.subplots(2, 2, figsize=(8, 6))
|
76 |
+
df[["sales", "pred"]] = df[["sales", "pred"]].replace(0.0, np.nan)
|
77 |
# Plot scatter plots for each group
|
78 |
axs[0, 0].plot(df.loc[df['Group'] == '4', 'Date'], df.loc[df['Group'] == '4', 'sales'], color='grey')
|
79 |
|
|
|
87 |
axs[1, 1].plot(df.loc[df['Group'] == '6', 'Date'], df.loc[df['Group'] == '6', 'sales'], color='grey')
|
88 |
axs[1, 1].set_title('Article Group 4')
|
89 |
plt.tight_layout()
|
90 |
+
return fig, axs
|
91 |
|
92 |
@st.cache_data
|
93 |
def load_data():
|
|
|
142 |
|
143 |
datepicker = st.date_input("Start of Forecast", datetime.date(2022, 10, 24), min_value=datetime.date(2022, 6, 26) + datetime.timedelta(days = 35), max_value=datetime.date(2023, 6, 26) - datetime.timedelta(days = 30))
|
144 |
|
145 |
+
fig, axs = generate_plot(df)
|
146 |
+
|
147 |
+
st.pyplot(fig)
|
148 |
|
149 |
if st.button("Forecast Sales", type="primary"):
|
150 |
dataloader = prepare_dataset(parameters, df.copy(), rain, temperature, datepicker, rain_mapping)
|
151 |
preds = predict(model, dataloader, datepicker)
|
152 |
+
update_plot(df, preds, axs)
|
153 |
|
154 |
if __name__ == '__main__':
|
155 |
main()
|