Spaces:
Runtime error
Runtime error
bug fix
Browse files
app.py
CHANGED
@@ -38,6 +38,7 @@ def raw_preds_to_df(raw,quantiles = None):
|
|
38 |
preds_df['pred_idx'] = preds_df['time_idx'] + preds_df['h'] - 1
|
39 |
return preds_df
|
40 |
|
|
|
41 |
def prepare_dataset(parameters, df, rain, temperature, datepicker, mapping):
|
42 |
if rain != "Default":
|
43 |
df["MTXWTH_Day_precip"] = mapping[rain]
|
@@ -59,25 +60,21 @@ def predict(_model, _dataloader, datepicker):
|
|
59 |
preds = raw_preds_to_df(out, quantiles = None)
|
60 |
return preds[["pred_idx", "Group", "pred"]]
|
61 |
|
62 |
-
|
|
|
63 |
df = pd.merge(df, preds, left_on=["time_idx", "Group"], right_on=["pred_idx", "Group"], how = "left")
|
64 |
df = df[~df["pred"].isna()]
|
65 |
-
df[
|
|
|
66 |
|
67 |
-
axs[0, 0].plot(df.loc[df['Group'] == '4', 'Date'], df.loc[df['Group'] == '4', 'pred'], color = 'red')
|
68 |
-
axs[0, 1].plot(df.loc[df['Group'] == '7', 'Date'], df.loc[df['Group'] == '4', 'pred'], color = 'red')
|
69 |
-
axs[1, 0].plot(df.loc[df['Group'] == '1', 'Date'], df.loc[df['Group'] == '4', 'pred'], color = 'red')
|
70 |
-
axs[1, 1].plot(df.loc[df['Group'] == '6', 'Date'], df.loc[df['Group'] == '4', 'pred'], color = 'red')
|
71 |
-
return fig, axs
|
72 |
|
73 |
-
#@st.cache_resource(
|
74 |
def generate_plot(df):
|
75 |
fig, axs = plt.subplots(2, 2, figsize=(8, 6))
|
76 |
-
|
77 |
# Plot scatter plots for each group
|
78 |
axs[0, 0].plot(df.loc[df['Group'] == '4', 'Date'], df.loc[df['Group'] == '4', 'sales'], color='grey')
|
79 |
-
|
80 |
axs[0, 0].set_title('Article Group 1')
|
|
|
81 |
axs[0, 1].plot(df.loc[df['Group'] == '7', 'Date'], df.loc[df['Group'] == '7', 'sales'], color='grey')
|
82 |
axs[0, 1].set_title('Article Group 2')
|
83 |
|
@@ -86,6 +83,12 @@ def generate_plot(df):
|
|
86 |
|
87 |
axs[1, 1].plot(df.loc[df['Group'] == '6', 'Date'], df.loc[df['Group'] == '6', 'sales'], color='grey')
|
88 |
axs[1, 1].set_title('Article Group 4')
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
plt.tight_layout()
|
90 |
return fig, axs
|
91 |
|
@@ -141,14 +144,14 @@ def main():
|
|
141 |
|
142 |
datepicker = st.date_input("Start of Forecast", datetime.date(2022, 10, 24), min_value=datetime.date(2022, 6, 26) + datetime.timedelta(days = 35), max_value=datetime.date(2023, 6, 26) - datetime.timedelta(days = 30), key = "date")
|
143 |
|
144 |
-
fig, axs = generate_plot(df.copy())
|
145 |
-
st.pyplot(fig)
|
146 |
|
147 |
if st.button("Forecast Sales", type="primary"):
|
148 |
dataloader = prepare_dataset(parameters, df.copy(), st.session_state.rain, st.session_state.temperature, st.session_state.date, rain_mapping)
|
149 |
preds = predict(model, dataloader, st.session_state.date)
|
150 |
-
update_plot(df, preds, axs, fig)
|
151 |
|
|
|
|
|
|
|
152 |
|
153 |
|
154 |
if __name__ == '__main__':
|
|
|
38 |
preds_df['pred_idx'] = preds_df['time_idx'] + preds_df['h'] - 1
|
39 |
return preds_df
|
40 |
|
41 |
+
@st.cache_data
|
42 |
def prepare_dataset(parameters, df, rain, temperature, datepicker, mapping):
|
43 |
if rain != "Default":
|
44 |
df["MTXWTH_Day_precip"] = mapping[rain]
|
|
|
60 |
preds = raw_preds_to_df(out, quantiles = None)
|
61 |
return preds[["pred_idx", "Group", "pred"]]
|
62 |
|
63 |
+
@st.cache_data
|
64 |
+
def adjust_data_for_plot(df, preds):
|
65 |
df = pd.merge(df, preds, left_on=["time_idx", "Group"], right_on=["pred_idx", "Group"], how = "left")
|
66 |
df = df[~df["pred"].isna()]
|
67 |
+
df["sales"] = df["sales"].replace(0.0, np.nan)
|
68 |
+
return df
|
69 |
|
|
|
|
|
|
|
|
|
|
|
70 |
|
|
|
71 |
def generate_plot(df):
|
72 |
fig, axs = plt.subplots(2, 2, figsize=(8, 6))
|
73 |
+
|
74 |
# Plot scatter plots for each group
|
75 |
axs[0, 0].plot(df.loc[df['Group'] == '4', 'Date'], df.loc[df['Group'] == '4', 'sales'], color='grey')
|
|
|
76 |
axs[0, 0].set_title('Article Group 1')
|
77 |
+
|
78 |
axs[0, 1].plot(df.loc[df['Group'] == '7', 'Date'], df.loc[df['Group'] == '7', 'sales'], color='grey')
|
79 |
axs[0, 1].set_title('Article Group 2')
|
80 |
|
|
|
83 |
|
84 |
axs[1, 1].plot(df.loc[df['Group'] == '6', 'Date'], df.loc[df['Group'] == '6', 'sales'], color='grey')
|
85 |
axs[1, 1].set_title('Article Group 4')
|
86 |
+
|
87 |
+
axs[0, 0].plot(df.loc[df['Group'] == '4', 'Date'], df.loc[df['Group'] == '4', 'pred'], color = 'red')
|
88 |
+
axs[0, 1].plot(df.loc[df['Group'] == '7', 'Date'], df.loc[df['Group'] == '4', 'pred'], color = 'red')
|
89 |
+
axs[1, 0].plot(df.loc[df['Group'] == '1', 'Date'], df.loc[df['Group'] == '4', 'pred'], color = 'red')
|
90 |
+
axs[1, 1].plot(df.loc[df['Group'] == '6', 'Date'], df.loc[df['Group'] == '4', 'pred'], color = 'red')
|
91 |
+
|
92 |
plt.tight_layout()
|
93 |
return fig, axs
|
94 |
|
|
|
144 |
|
145 |
datepicker = st.date_input("Start of Forecast", datetime.date(2022, 10, 24), min_value=datetime.date(2022, 6, 26) + datetime.timedelta(days = 35), max_value=datetime.date(2023, 6, 26) - datetime.timedelta(days = 30), key = "date")
|
146 |
|
|
|
|
|
147 |
|
148 |
if st.button("Forecast Sales", type="primary"):
|
149 |
dataloader = prepare_dataset(parameters, df.copy(), st.session_state.rain, st.session_state.temperature, st.session_state.date, rain_mapping)
|
150 |
preds = predict(model, dataloader, st.session_state.date)
|
|
|
151 |
|
152 |
+
data_plot = adjust_data_for_plot(df.copy(), preds)
|
153 |
+
fig, axs = generate_plot(df.copy())
|
154 |
+
st.pyplot(fig)
|
155 |
|
156 |
|
157 |
if __name__ == '__main__':
|