leuschnm commited on
Commit
6bd273b
·
1 Parent(s): cc82991
Files changed (1) hide show
  1. app.py +29 -33
app.py CHANGED
@@ -111,10 +111,37 @@ def main():
111
  # Start App
112
  st.title("Temporal Fusion Transformers for Interpretable Multi-horizon Time Series Forecasting")
113
 
114
-
115
  image = Image.open('data/image.png')
116
-
117
  st.image(image, caption='Coding.Waterkant Festival for AI')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118
  st.markdown(body = """
119
  ### Abstract
120
  Multi-horizon forecasting often contains a complex mix of inputs – including
@@ -141,37 +168,6 @@ def main():
141
  Adjustments to the model and extention with Quantile forecast are coming soon ;)
142
  """)
143
 
144
- try:
145
- # check if the key exists in session state
146
- _ = st.session_state.rain
147
- _ = st.session_state.temperature
148
- _ = st.session_state.date
149
- except AttributeError:
150
- # otherwise set it to false
151
- st.session_state.rain = 'Default'
152
- st.session_state.temperature = 0.0
153
- # st.session_state.date = datetime.date(2022, 10, 24)
154
-
155
- RAIN_MAPPING = {
156
- "Yes" : 1,
157
- "No" : 0
158
- }
159
-
160
- parameters, df = load_data()
161
- model = init_model()
162
-
163
- dataloader = prepare_dataset(parameters, df.copy(), st.session_state.rain, st.session_state.temperature, st.session_state.date, RAIN_MAPPING)
164
- preds = predict(model, dataloader, st.session_state.date)
165
-
166
- data_plot = adjust_data_for_plot(df.copy(), preds)
167
- fig, _ = generate_plot(data_plot)
168
- datepicker = st.date_input("Start of Forecast", value = datetime.date(2022, 10, 24) ,min_value=datetime.date(2022, 6, 26) + datetime.timedelta(days = 35), max_value=datetime.date(2023, 6, 26) - datetime.timedelta(days = 30), key = "date")
169
-
170
- st.pyplot(fig)
171
-
172
- temperature = st.slider('Change in Temperature', min_value=-10.0, max_value=10.0, value=st.session_state.temperature, step=0.25, key = "temperature")
173
- rain = st.radio("Rain Indicator", ('Default', 'Yes', 'No'), key = "rain")
174
-
175
  if __name__ == '__main__':
176
  main()
177
 
 
111
  # Start App
112
  st.title("Temporal Fusion Transformers for Interpretable Multi-horizon Time Series Forecasting")
113
 
 
114
  image = Image.open('data/image.png')
 
115
  st.image(image, caption='Coding.Waterkant Festival for AI')
116
+
117
+ st.markdown(body = """
118
+ ### Experiments
119
+ We implemented TFT for sales multi-horizon sales forecast during Coding.Waterkant.
120
+ Please try our implementation and adjust some of the training data.
121
+
122
+ Adjustments to the model and extention with Quantile forecast are coming soon ;)
123
+ """)
124
+
125
+ RAIN_MAPPING = {
126
+ "Yes" : 1,
127
+ "No" : 0
128
+ }
129
+
130
+ parameters, df = load_data()
131
+ model = init_model()
132
+
133
+ datepicker = st.date_input("Start of Forecast", value = datetime.date(2022, 10, 24) ,min_value=datetime.date(2022, 6, 26) + datetime.timedelta(days = 35), max_value=datetime.date(2023, 6, 26) - datetime.timedelta(days = 30), key = "date")
134
+ temperature = st.slider('Change in Temperature', min_value=-10.0, max_value=10.0, value=0.0, step=0.25, key = "temperature")
135
+ rain = st.radio("Rain Indicator", ('Default', 'Yes', 'No'), key = "rain")
136
+
137
+ dataloader = prepare_dataset(parameters, df.copy(), st.session_state.rain, st.session_state.temperature, st.session_state.date, RAIN_MAPPING)
138
+ preds = predict(model, dataloader, st.session_state.date)
139
+
140
+ data_plot = adjust_data_for_plot(df.copy(), preds)
141
+ fig, _ = generate_plot(data_plot)
142
+
143
+ st.pyplot(fig)
144
+
145
  st.markdown(body = """
146
  ### Abstract
147
  Multi-horizon forecasting often contains a complex mix of inputs – including
 
168
  Adjustments to the model and extention with Quantile forecast are coming soon ;)
169
  """)
170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
171
  if __name__ == '__main__':
172
  main()
173