Spaces:
Runtime error
Runtime error
bug fix
Browse files
app.py
CHANGED
@@ -138,19 +138,19 @@ def main():
|
|
138 |
We implemented TFT for sales multi-horizon sales forecast during Coding.Waterkant.
|
139 |
Please try our implementation and adjust some of the training data.
|
140 |
|
141 |
-
Adjustments to the model and extention with Quantile
|
142 |
""")
|
143 |
|
144 |
-
try:
|
145 |
# check if the key exists in session state
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
except AttributeError:
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
|
155 |
RAIN_MAPPING = {
|
156 |
"Yes" : 1,
|
@@ -166,11 +166,11 @@ def main():
|
|
166 |
data_plot = adjust_data_for_plot(df.copy(), preds)
|
167 |
fig, _ = generate_plot(data_plot)
|
168 |
|
169 |
-
datepicker = st.date_input("Start of Forecast", min_value=datetime.date(2022, 6, 26) + datetime.timedelta(days = 35), max_value=datetime.date(2023, 6, 26) - datetime.timedelta(days = 30), key = "date")
|
170 |
|
171 |
st.pyplot(fig)
|
172 |
|
173 |
-
temperature = st.slider('Change in Temperature', min_value=-10.0, max_value=10.0, step=0.25, key = "temperature")
|
174 |
rain = st.radio("Rain Indicator", ('Default', 'Yes', 'No'), key = "rain")
|
175 |
|
176 |
if __name__ == '__main__':
|
|
|
138 |
We implemented TFT for sales multi-horizon sales forecast during Coding.Waterkant.
|
139 |
Please try our implementation and adjust some of the training data.
|
140 |
|
141 |
+
Adjustments to the model and extention with Quantile forecast are coming soon ;)
|
142 |
""")
|
143 |
|
144 |
+
#try:
|
145 |
# check if the key exists in session state
|
146 |
+
# _ = st.session_state.rain
|
147 |
+
# _ = st.session_state.temperature
|
148 |
+
# _ = st.session_state.date
|
149 |
+
#except AttributeError:
|
150 |
+
# # otherwise set it to false
|
151 |
+
# st.session_state.rain = 'Default'
|
152 |
+
# st.session_state.temperature = 0.0
|
153 |
+
# st.session_state.date = datetime.date(2022, 10, 24)
|
154 |
|
155 |
RAIN_MAPPING = {
|
156 |
"Yes" : 1,
|
|
|
166 |
data_plot = adjust_data_for_plot(df.copy(), preds)
|
167 |
fig, _ = generate_plot(data_plot)
|
168 |
|
169 |
+
datepicker = st.date_input("Start of Forecast", datetime.date(2022, 10, 24), min_value=datetime.date(2022, 6, 26) + datetime.timedelta(days = 35), max_value=datetime.date(2023, 6, 26) - datetime.timedelta(days = 30), key = "date")
|
170 |
|
171 |
st.pyplot(fig)
|
172 |
|
173 |
+
temperature = st.slider('Change in Temperature', min_value=-10.0, max_value=10.0, value=0.0, step=0.25, key = "temperature")
|
174 |
rain = st.radio("Rain Indicator", ('Default', 'Yes', 'No'), key = "rain")
|
175 |
|
176 |
if __name__ == '__main__':
|