leuschnm commited on
Commit
13ba05c
·
1 Parent(s): b2f7dd1
Files changed (1) hide show
  1. app.py +12 -12
app.py CHANGED
@@ -138,19 +138,19 @@ def main():
138
  We implemented TFT for sales multi-horizon sales forecast during Coding.Waterkant.
139
  Please try our implementation and adjust some of the training data.
140
 
141
- Adjustments to the model and extention with Quantile forecasts are coming soon ;)
142
  """)
143
 
144
- try:
145
  # check if the key exists in session state
146
- _ = st.session_state.rain
147
- _ = st.session_state.temperature
148
- _ = st.session_state.date
149
- except AttributeError:
150
- # otherwise set it to false
151
- st.session_state.rain = 'Default'
152
- st.session_state.temperature = 0.0
153
- st.session_state.date = datetime.date(2022, 10, 24)
154
 
155
  RAIN_MAPPING = {
156
  "Yes" : 1,
@@ -166,11 +166,11 @@ def main():
166
  data_plot = adjust_data_for_plot(df.copy(), preds)
167
  fig, _ = generate_plot(data_plot)
168
 
169
- datepicker = st.date_input("Start of Forecast", min_value=datetime.date(2022, 6, 26) + datetime.timedelta(days = 35), max_value=datetime.date(2023, 6, 26) - datetime.timedelta(days = 30), key = "date")
170
 
171
  st.pyplot(fig)
172
 
173
- temperature = st.slider('Change in Temperature', min_value=-10.0, max_value=10.0, step=0.25, key = "temperature")
174
  rain = st.radio("Rain Indicator", ('Default', 'Yes', 'No'), key = "rain")
175
 
176
  if __name__ == '__main__':
 
138
  We implemented TFT for sales multi-horizon sales forecast during Coding.Waterkant.
139
  Please try our implementation and adjust some of the training data.
140
 
141
+ Adjustments to the model and extention with Quantile forecast are coming soon ;)
142
  """)
143
 
144
+ #try:
145
  # check if the key exists in session state
146
+ # _ = st.session_state.rain
147
+ # _ = st.session_state.temperature
148
+ # _ = st.session_state.date
149
+ #except AttributeError:
150
+ # # otherwise set it to false
151
+ # st.session_state.rain = 'Default'
152
+ # st.session_state.temperature = 0.0
153
+ # st.session_state.date = datetime.date(2022, 10, 24)
154
 
155
  RAIN_MAPPING = {
156
  "Yes" : 1,
 
166
  data_plot = adjust_data_for_plot(df.copy(), preds)
167
  fig, _ = generate_plot(data_plot)
168
 
169
+ datepicker = st.date_input("Start of Forecast", datetime.date(2022, 10, 24), min_value=datetime.date(2022, 6, 26) + datetime.timedelta(days = 35), max_value=datetime.date(2023, 6, 26) - datetime.timedelta(days = 30), key = "date")
170
 
171
  st.pyplot(fig)
172
 
173
+ temperature = st.slider('Change in Temperature', min_value=-10.0, max_value=10.0, value=0.0, step=0.25, key = "temperature")
174
  rain = st.radio("Rain Indicator", ('Default', 'Yes', 'No'), key = "rain")
175
 
176
  if __name__ == '__main__':