Spaces:
Runtime error
Runtime error
File size: 4,896 Bytes
fafd428 00e684b fafd428 00e684b fafd428 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
## Imports
import pickle
import warnings
import streamlit as st
from pathlib import Path
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import datetime
# import torch
from torch.distributions import Normal
from pytorch_forecasting import (
TimeSeriesDataSet,
TemporalFusionTransformer,
)
## Functions
def raw_preds_to_df(raw,quantiles = None):
"""
raw is output of model.predict with return_index=True
quantiles can be provided like [0.1,0.5,0.9] to get interpretable quantiles
in the output, time_idx is the first prediction time index (one step after knowledge cutoff)
pred_idx the index of the predicted date i.e. time_idx + h - 1
"""
index = raw[2]
preds = raw[0].prediction
dec_len = preds.shape[1]
n_quantiles = preds.shape[-1]
preds_df = pd.DataFrame(index.values.repeat(dec_len * n_quantiles, axis=0),columns=index.columns)
preds_df = preds_df.assign(h=np.tile(np.repeat(np.arange(1,1+dec_len),n_quantiles),len(preds_df)//(dec_len*n_quantiles)))
preds_df = preds_df.assign(q=np.tile(np.arange(n_quantiles),len(preds_df)//n_quantiles))
preds_df = preds_df.assign(pred=preds.flatten().cpu().numpy())
if quantiles is not None:
preds_df['q'] = preds_df['q'].map({i:q for i,q in enumerate(quantiles)})
preds_df['pred_idx'] = preds_df['time_idx'] + preds_df['h'] - 1
return preds_df
def prepare_dataset(parameters, df, rain, temperature, datepicker):
if rain != "Default":
df["MTXWTH_Day_precip"] = rain_mapping[rain]
df["MTXWTH_Temp_min"] = df["MTXWTH_Temp_min"] + temperature
df["MTXWTH_Temp_max"] = df["MTXWTH_Temp_max"] + temperature
lowerbound = datepicker - datetime.timedelta(days = 35)
upperbound = datepicker + datetime.timedelta(days = 30)
df = df.loc[(df["Date"]>lowerbound) & (df["Date"]<=upperbound)]
df = TimeSeriesDataSet.from_parameters(parameters, df)
return df.to_dataloader(train=False, batch_size=256,num_workers = 0)
def predict(model, dataloader):
return model.predict(dataloader, mode="raw", return_x=True, return_index=True)
## Initiate Data
with open('data/parameters.pkl', 'rb') as f:
parameters = pickle.load(f)
model = TemporalFusionTransformer.load_from_checkpoint('model/tft_check.ckpt', map_location=torch.device('cpu'))
df = pd.read_pickle('data/test_data.pkl')
df = df.loc[(df["Branch"] == 15) & (df["Group"].isin(["6","7","4","1"]))]
rain_mapping = {
"Yes" : 1,
"No" : 0
}
# Start App
st.title("Temporal Fusion Transformers for Interpretable Multi-horizon Time Series Forecasting")
st.markdown(body = """
### Abstract
Multi-horizon forecasting often contains a complex mix of inputs – including
static (i.e. time-invariant) covariates, known future inputs, and other exogenous
time series that are only observed in the past – without any prior information
on how they interact with the target. Several deep learning methods have been
proposed, but they are typically ‘black-box’ models which do not shed light on
how they use the full range of inputs present in practical scenarios. In this pa-
per, we introduce the Temporal Fusion Transformer (TFT) – a novel attention-
based architecture which combines high-performance multi-horizon forecasting
with interpretable insights into temporal dynamics. To learn temporal rela-
tionships at different scales, TFT uses recurrent layers for local processing and
interpretable self-attention layers for long-term dependencies. TFT utilizes spe-
cialized components to select relevant features and a series of gating layers to
suppress unnecessary components, enabling high performance in a wide range of
scenarios. On a variety of real-world datasets, we demonstrate significant per-
formance improvements over existing benchmarks, and showcase three practical
interpretability use cases of TFT.
""")
rain = st.radio("Rain Indicator", ('Default', 'Yes', 'No'))
temperature = st.slider('Change in Temperature', min_value=-10, max_value=+10, value=0, step=0.25)
datepicker = st.date_input("Start of Forecast", datetime.date(2022, 12, 24), min_value=datetime.date(2022, 6, 26) + datetime.timedelta(days = 35), max_value=datetime.date(2023, 6, 26) - datetime.timedelta(days = 30))
arr = np.random.normal(1, 1, size=100)
fig, ax = plt.subplots()
ax.hist(arr, bins=20)
st.pyplot(fig)
st.button("Forecast Sales", type="primary") #on_click=None,
# %%
preds = raw_preds_to_df(out, quantiles = None)
preds = preds.merge(data_selected[['time_idx','Group','Branch','sales','weight','Date','MTXWTH_Day_precip','MTXWTH_Temp_max','MTXWTH_Temp_min']],how='left',left_on=['pred_idx','Group','Branch'],right_on=['time_idx','Group','Branch'])
preds.rename(columns={'time_idx_x':'time_idx'},inplace=True)
preds.drop(columns=['time_idx_y'],inplace=True)
|