Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,51 +1,45 @@
|
|
1 |
import os
|
|
|
|
|
|
|
2 |
|
3 |
-
# Set Hugging Face and Torch cache to a guaranteed-writable location
|
4 |
-
cache_dir = "/tmp/huggingface_cache"
|
5 |
-
os.environ["HF_HOME"] = cache_dir
|
6 |
-
os.environ["TORCH_HOME"] = cache_dir
|
7 |
-
|
8 |
-
# Create the directory if it doesn't exist
|
9 |
-
os.makedirs(cache_dir, exist_ok=True)
|
10 |
-
|
11 |
-
import gradio as gr
|
12 |
import torch
|
13 |
-
|
14 |
-
from io import BytesIO
|
15 |
from PIL import Image
|
|
|
|
|
16 |
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
|
|
|
17 |
from olmocr.data.renderpdf import render_pdf_to_base64png
|
18 |
from olmocr.prompts import build_finetuning_prompt
|
19 |
from olmocr.prompts.anchor import get_anchor_text
|
20 |
-
from ebooklib import epub
|
21 |
-
import base64
|
22 |
-
import tempfile
|
23 |
-
|
24 |
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
# Load model
|
27 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
28 |
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
29 |
-
"allenai/olmOCR-7B-0225-preview",
|
|
|
30 |
).eval().to(device)
|
31 |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
|
32 |
|
33 |
-
|
34 |
def ocr_page(pdf_path, page_num):
|
35 |
-
# Render page to base64 PNG
|
36 |
image_b64 = render_pdf_to_base64png(pdf_path, page_num + 1, target_longest_image_dim=1024)
|
37 |
anchor_text = get_anchor_text(pdf_path, page_num + 1, pdf_engine="pdfreport", target_length=4000)
|
38 |
prompt = build_finetuning_prompt(anchor_text)
|
39 |
|
40 |
-
messages = [
|
41 |
-
|
42 |
-
|
43 |
-
"
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
}
|
48 |
-
]
|
49 |
|
50 |
prompt_text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
51 |
main_image = Image.open(BytesIO(base64.b64decode(image_b64)))
|
@@ -65,7 +59,6 @@ def ocr_page(pdf_path, page_num):
|
|
65 |
decoded = processor.tokenizer.batch_decode(new_tokens, skip_special_tokens=True)
|
66 |
return decoded[0] if decoded else ""
|
67 |
|
68 |
-
|
69 |
def convert_pdf_to_epub(pdf_file, title, author, language):
|
70 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_pdf:
|
71 |
tmp_pdf.write(pdf_file.read())
|
@@ -74,18 +67,17 @@ def convert_pdf_to_epub(pdf_file, title, author, language):
|
|
74 |
reader = PdfReader(tmp_pdf_path)
|
75 |
num_pages = len(reader.pages)
|
76 |
|
77 |
-
# Create EPUB book
|
78 |
book = epub.EpubBook()
|
79 |
book.set_title(title)
|
80 |
book.add_author(author)
|
81 |
book.set_language(language)
|
82 |
|
83 |
-
#
|
84 |
cover_image_b64 = render_pdf_to_base64png(tmp_pdf_path, 1, target_longest_image_dim=1024)
|
85 |
cover_image_bytes = base64.b64decode(cover_image_b64)
|
86 |
book.set_cover("cover.jpg", cover_image_bytes)
|
87 |
|
88 |
-
# OCR
|
89 |
for i in range(num_pages):
|
90 |
text = ocr_page(tmp_pdf_path, i)
|
91 |
chapter = epub.EpubHtml(title=f"Page {i+1}", file_name=f"page_{i+1}.xhtml", lang=language)
|
@@ -102,12 +94,10 @@ def convert_pdf_to_epub(pdf_file, title, author, language):
|
|
102 |
with open(epub_path, "rb") as f:
|
103 |
return epub_path, f.read()
|
104 |
|
105 |
-
|
106 |
def interface_fn(pdf, title, author, language):
|
107 |
-
epub_path,
|
108 |
return epub_path
|
109 |
|
110 |
-
|
111 |
demo = gr.Interface(
|
112 |
fn=interface_fn,
|
113 |
inputs=[
|
@@ -123,4 +113,4 @@ demo = gr.Interface(
|
|
123 |
)
|
124 |
|
125 |
if __name__ == "__main__":
|
126 |
-
demo.launch(share
|
|
|
1 |
import os
|
2 |
+
import base64
|
3 |
+
import tempfile
|
4 |
+
from io import BytesIO
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import torch
|
7 |
+
import gradio as gr
|
|
|
8 |
from PIL import Image
|
9 |
+
from PyPDF2 import PdfReader
|
10 |
+
from ebooklib import epub
|
11 |
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
|
12 |
+
|
13 |
from olmocr.data.renderpdf import render_pdf_to_base64png
|
14 |
from olmocr.prompts import build_finetuning_prompt
|
15 |
from olmocr.prompts.anchor import get_anchor_text
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
# Set Hugging Face and Torch cache to a guaranteed-writable location
|
18 |
+
cache_dir = "/tmp/huggingface_cache"
|
19 |
+
os.environ["HF_HOME"] = cache_dir
|
20 |
+
os.environ["TORCH_HOME"] = cache_dir
|
21 |
+
os.makedirs(cache_dir, exist_ok=True)
|
22 |
|
23 |
+
# Load model and processor
|
24 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
25 |
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
26 |
+
"allenai/olmOCR-7B-0225-preview",
|
27 |
+
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
28 |
).eval().to(device)
|
29 |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
|
30 |
|
|
|
31 |
def ocr_page(pdf_path, page_num):
|
|
|
32 |
image_b64 = render_pdf_to_base64png(pdf_path, page_num + 1, target_longest_image_dim=1024)
|
33 |
anchor_text = get_anchor_text(pdf_path, page_num + 1, pdf_engine="pdfreport", target_length=4000)
|
34 |
prompt = build_finetuning_prompt(anchor_text)
|
35 |
|
36 |
+
messages = [{
|
37 |
+
"role": "user",
|
38 |
+
"content": [
|
39 |
+
{"type": "text", "text": prompt},
|
40 |
+
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_b64}"}}
|
41 |
+
],
|
42 |
+
}]
|
|
|
|
|
43 |
|
44 |
prompt_text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
45 |
main_image = Image.open(BytesIO(base64.b64decode(image_b64)))
|
|
|
59 |
decoded = processor.tokenizer.batch_decode(new_tokens, skip_special_tokens=True)
|
60 |
return decoded[0] if decoded else ""
|
61 |
|
|
|
62 |
def convert_pdf_to_epub(pdf_file, title, author, language):
|
63 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_pdf:
|
64 |
tmp_pdf.write(pdf_file.read())
|
|
|
67 |
reader = PdfReader(tmp_pdf_path)
|
68 |
num_pages = len(reader.pages)
|
69 |
|
|
|
70 |
book = epub.EpubBook()
|
71 |
book.set_title(title)
|
72 |
book.add_author(author)
|
73 |
book.set_language(language)
|
74 |
|
75 |
+
# Set cover from page 1
|
76 |
cover_image_b64 = render_pdf_to_base64png(tmp_pdf_path, 1, target_longest_image_dim=1024)
|
77 |
cover_image_bytes = base64.b64decode(cover_image_b64)
|
78 |
book.set_cover("cover.jpg", cover_image_bytes)
|
79 |
|
80 |
+
# Add OCR'd pages as chapters
|
81 |
for i in range(num_pages):
|
82 |
text = ocr_page(tmp_pdf_path, i)
|
83 |
chapter = epub.EpubHtml(title=f"Page {i+1}", file_name=f"page_{i+1}.xhtml", lang=language)
|
|
|
94 |
with open(epub_path, "rb") as f:
|
95 |
return epub_path, f.read()
|
96 |
|
|
|
97 |
def interface_fn(pdf, title, author, language):
|
98 |
+
epub_path, _ = convert_pdf_to_epub(pdf, title, author, language)
|
99 |
return epub_path
|
100 |
|
|
|
101 |
demo = gr.Interface(
|
102 |
fn=interface_fn,
|
103 |
inputs=[
|
|
|
113 |
)
|
114 |
|
115 |
if __name__ == "__main__":
|
116 |
+
demo.launch(share=True)
|