olmocr-demo / app.py
leonarb's picture
Create app.py
19918ea verified
raw
history blame
662 Bytes
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Load model and tokenizer
model_name = "allenai/olmOCR-7B-0225-preview"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32)
def generate_text(prompt):
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Define Gradio UI
demo = gr.Interface(fn=generate_text, inputs="text", outputs="text")
demo.launch()