Spaces:
Running
Running
import os | |
import base64 | |
import tempfile | |
from io import BytesIO | |
import torch | |
import gradio as gr | |
from PIL import Image | |
from PyPDF2 import PdfReader | |
from ebooklib import epub | |
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration | |
from olmocr.data.renderpdf import render_pdf_to_base64png | |
from olmocr.prompts import build_finetuning_prompt | |
from olmocr.prompts.anchor import get_anchor_text | |
# Set Hugging Face and Torch cache to a guaranteed-writable location | |
cache_dir = "/tmp/huggingface_cache" | |
os.environ["HF_HOME"] = cache_dir | |
os.environ["TORCH_HOME"] = cache_dir | |
os.makedirs(cache_dir, exist_ok=True) | |
# Load model and processor | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = Qwen2VLForConditionalGeneration.from_pretrained( | |
"allenai/olmOCR-7B-0225-preview", | |
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32 | |
).eval().to(device) | |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct") | |
def ocr_page(pdf_path, page_num): | |
image_b64 = render_pdf_to_base64png(pdf_path, page_num + 1, target_longest_image_dim=1024) | |
anchor_text = get_anchor_text(pdf_path, page_num + 1, pdf_engine="pdfreport", target_length=4000) | |
prompt = build_finetuning_prompt(anchor_text) | |
messages = [{ | |
"role": "user", | |
"content": [ | |
{"type": "text", "text": prompt}, | |
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_b64}"}} | |
], | |
}] | |
prompt_text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
main_image = Image.open(BytesIO(base64.b64decode(image_b64))) | |
inputs = processor(text=[prompt_text], images=[main_image], return_tensors="pt", padding=True) | |
inputs = {k: v.to(device) for k, v in inputs.items()} | |
with torch.no_grad(): | |
outputs = model.generate( | |
**inputs, | |
temperature=0.8, | |
max_new_tokens=1024, | |
do_sample=True, | |
) | |
prompt_len = inputs["input_ids"].shape[1] | |
new_tokens = outputs[:, prompt_len:] | |
decoded = processor.tokenizer.batch_decode(new_tokens, skip_special_tokens=True) | |
return decoded[0] if decoded else "" | |
def convert_pdf_to_epub(pdf_file, title, author, language): | |
# Save the uploaded file to a temporary path | |
tmp_pdf_path = "/tmp/uploaded.pdf" | |
with open(tmp_pdf_path, "wb") as f: | |
f.write(pdf_file.read()) # This ensures the file isn't empty | |
# Now it's safe to read it | |
reader = PdfReader(tmp_pdf_path) | |
# Extract the first page for the cover (if needed) | |
first_page = reader.pages[0] | |
cover_path = "/tmp/cover.jpg" | |
images = convert_from_path(tmp_pdf_path, first_page=1, last_page=1) | |
images[0].save(cover_path, "JPEG") | |
# Run OCR and get text from olmocr | |
ocr_text = olmocr.process(tmp_pdf_path) | |
# Use metadata | |
epub_path = "/tmp/output.epub" | |
create_epub_from_text( | |
text=ocr_text, | |
output_path=epub_path, | |
title=title, | |
author=author, | |
language=language, | |
cover_image=cover_path | |
) | |
return epub_path, cover_path | |
def interface_fn(pdf, title, author, language): | |
epub_path, _ = convert_pdf_to_epub(pdf, title, author, language) | |
return epub_path | |
demo = gr.Interface( | |
fn=interface_fn, | |
inputs=[ | |
gr.File(label="Upload PDF", file_types=[".pdf"]), | |
gr.Textbox(label="EPUB Title", placeholder="e.g. Understanding AI"), | |
gr.Textbox(label="Author", placeholder="e.g. Allen AI"), | |
gr.Textbox(label="Language", placeholder="e.g. en", value="en"), | |
], | |
outputs=gr.File(label="Download EPUB"), | |
title="PDF to EPUB Converter (olmOCR)", | |
description="Upload a PDF to convert it into a structured EPUB. The first page is used as the cover. OCR is performed with the olmOCR model.", | |
allow_flagging="never", | |
) | |
if __name__ == "__main__": | |
demo.launch(share=True) | |