olmocr-demo / app.py
leonarb's picture
Update app.py
606638a verified
raw
history blame
4.08 kB
import os
os.environ["TRANSFORMERS_CACHE"] = "/tmp/transformers"
import torch
import base64
from io import BytesIO
from PIL import Image
import gradio as gr
from ebooklib import epub
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
from olmocr.data.renderpdf import render_pdf_to_base64png
from olmocr.prompts import build_finetuning_prompt
from olmocr.prompts.anchor import get_anchor_text
from PyPDF2 import PdfReader
# Set a writable cache directory for HF
os.environ['HF_HOME'] = '/tmp/.cache/huggingface'
# Load processor and model
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
model = Qwen2VLForConditionalGeneration.from_pretrained(
"allenai/olmOCR-7B-0225-preview", torch_dtype=torch.bfloat16
).eval()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
def extract_text_from_page(pdf_path, page_num):
# Render image
image_base64 = render_pdf_to_base64png(pdf_path, page_num, target_longest_image_dim=1024)
image = Image.open(BytesIO(base64.b64decode(image_base64)))
# Prompt and input
anchor_text = get_anchor_text(pdf_path, page_num, pdf_engine="pdfreport", target_length=4000)
prompt = build_finetuning_prompt(anchor_text)
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_base64}"}},
],
}
]
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(text=[text], images=[image], return_tensors="pt", padding=True)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
output = model.generate(
**inputs,
temperature=0.8,
max_new_tokens=256,
num_return_sequences=1,
do_sample=True,
)
prompt_len = inputs["input_ids"].shape[1]
new_tokens = output[:, prompt_len:]
decoded = processor.tokenizer.batch_decode(new_tokens, skip_special_tokens=True)[0]
return decoded, image_base64 if page_num == 1 else None
def process_pdf(file, title="Extracted PDF", author="olmOCR", language="en"):
file_path = file.name
reader = PdfReader(file_path)
num_pages = len(reader.pages)
all_text = []
cover_image_data = None
for page in range(1, num_pages + 1):
text, cover_image = extract_text_from_page(file_path, page)
all_text.append(f"<h2>Page {page}</h2><p>{text}</p>")
if cover_image and not cover_image_data:
cover_image_data = cover_image # base64
# Build EPUB
book = epub.EpubBook()
book.set_identifier("id123456")
book.set_title(title)
book.set_language(language)
book.add_author(author)
# Add cover image
if cover_image_data:
cover_bytes = base64.b64decode(cover_image_data)
book.set_cover("cover.jpg", cover_bytes)
# Create chapter with all text
chapter = epub.EpubHtml(title=title, file_name="chap1.xhtml", lang=language)
chapter.content = f"<h1>{title}</h1>{''.join(all_text)}"
book.add_item(chapter)
book.toc = (epub.Link('chap1.xhtml', title, 'chap1'),)
book.add_item(epub.EpubNavi())
book.add_item(epub.EpubNCX())
book.spine = ['nav', chapter]
epub_path = f"/tmp/{title.replace(' ', '_')}.epub"
epub.write_epub(epub_path, book)
return epub_path
# Gradio Interface
iface = gr.Interface(
fn=process_pdf,
inputs=[
gr.File(label="Upload PDF"),
gr.Textbox(value="Extracted PDF", label="EPUB Title"),
gr.Textbox(value="olmOCR", label="Author"),
gr.Textbox(value="en", label="Language"),
],
outputs=gr.File(label="Download EPUB"),
title="olmOCR PDF to EPUB (Full PDF + Cover Image)",
description="Extract text from ALL pages of a PDF and generate an EPUB with the first page as cover.",
allow_flagging="never"
)
if __name__ == "__main__":
iface.launch()