Spaces:
Runtime error
Runtime error
Commit
·
a57fa2f
1
Parent(s):
0626a14
switch to inpainting
Browse files- .gitignore +3 -0
- LICENSE +21 -0
- README.md +4 -4
- app.py +121 -56
- grass.png +0 -0
- grass_with_mask.png +0 -0
- notebooks/clip_guided.ipynb +13 -1
- notebooks/inpaint.ipynb +13 -1
- notebooks/text2im.ipynb +13 -1
- ocean.jpg +0 -0
- ocean_with_mask.png +0 -0
- requirements.txt +2 -4
- server.py +0 -175
- setup.py +15 -1
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__/
|
2 |
+
*.egg-info/
|
3 |
+
.DS_Store
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2021 OpenAI
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
app_file: app.py
|
8 |
pinned: false
|
|
|
1 |
---
|
2 |
+
title: GLIDE_Inpaint
|
3 |
+
emoji: 💻
|
4 |
+
colorFrom: green
|
5 |
+
colorTo: purple
|
6 |
sdk: gradio
|
7 |
app_file: app.py
|
8 |
pinned: false
|
app.py
CHANGED
@@ -1,14 +1,18 @@
|
|
|
|
|
|
1 |
|
2 |
-
|
3 |
-
os.system('pip install -e .')
|
4 |
-
import gradio as gr
|
5 |
|
6 |
-
|
7 |
-
from
|
8 |
-
# from fastapi import FastAPI
|
9 |
|
|
|
10 |
from PIL import Image
|
|
|
|
|
|
|
11 |
import torch as th
|
|
|
12 |
|
13 |
from glide_text2im.download import load_checkpoint
|
14 |
from glide_text2im.model_creation import (
|
@@ -17,8 +21,12 @@ from glide_text2im.model_creation import (
|
|
17 |
model_and_diffusion_defaults_upsampler
|
18 |
)
|
19 |
|
20 |
-
#
|
21 |
-
|
|
|
|
|
|
|
|
|
22 |
|
23 |
# This notebook supports both CPU and GPU.
|
24 |
# On CPU, generating one sample may take on the order of 20 minutes.
|
@@ -29,6 +37,7 @@ device = th.device('cpu' if not has_cuda else 'cuda')
|
|
29 |
|
30 |
# Create base model.
|
31 |
options = model_and_diffusion_defaults()
|
|
|
32 |
options['use_fp16'] = has_cuda
|
33 |
options['timestep_respacing'] = '100' # use 100 diffusion steps for fast sampling
|
34 |
model, diffusion = create_model_and_diffusion(**options)
|
@@ -36,11 +45,12 @@ model.eval()
|
|
36 |
if has_cuda:
|
37 |
model.convert_to_fp16()
|
38 |
model.to(device)
|
39 |
-
model.load_state_dict(load_checkpoint('base', device))
|
40 |
print('total base parameters', sum(x.numel() for x in model.parameters()))
|
41 |
|
42 |
# Create upsampler model.
|
43 |
options_up = model_and_diffusion_defaults_upsampler()
|
|
|
44 |
options_up['use_fp16'] = has_cuda
|
45 |
options_up['timestep_respacing'] = 'fast27' # use 27 diffusion steps for very fast sampling
|
46 |
model_up, diffusion_up = create_model_and_diffusion(**options_up)
|
@@ -48,20 +58,18 @@ model_up.eval()
|
|
48 |
if has_cuda:
|
49 |
model_up.convert_to_fp16()
|
50 |
model_up.to(device)
|
51 |
-
model_up.load_state_dict(load_checkpoint('upsample', device))
|
52 |
print('total upsampler parameters', sum(x.numel() for x in model_up.parameters()))
|
53 |
|
|
|
|
|
|
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
reshaped = scaled.permute(2, 0, 3, 1).reshape([batch.shape[2], -1, 3])
|
59 |
-
return Image.fromarray(reshaped.numpy())
|
60 |
-
|
61 |
-
|
62 |
-
# Create a classifier-free guidance sampling function
|
63 |
-
guidance_scale = 3.0
|
64 |
|
|
|
65 |
def model_fn(x_t, ts, **kwargs):
|
66 |
half = x_t[: len(x_t) // 2]
|
67 |
combined = th.cat([half, half], dim=0)
|
@@ -72,19 +80,69 @@ def model_fn(x_t, ts, **kwargs):
|
|
72 |
eps = th.cat([half_eps, half_eps], dim=0)
|
73 |
return th.cat([eps, rest], dim=1)
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
79 |
|
80 |
-
#
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
-
# Tune this parameter to control the sharpness of 256x256 images.
|
86 |
-
# A value of 1.0 is sharper, but sometimes results in grainy artifacts.
|
87 |
-
upsample_temp = 0.997
|
88 |
|
89 |
##############################
|
90 |
# Sample from the base model #
|
@@ -103,6 +161,7 @@ def sample(prompt):
|
|
103 |
)
|
104 |
|
105 |
# Pack the tokens together into model kwargs.
|
|
|
106 |
model_kwargs = dict(
|
107 |
tokens=th.tensor(
|
108 |
[tokens] * batch_size + [uncond_tokens] * batch_size, device=device
|
@@ -112,6 +171,10 @@ def sample(prompt):
|
|
112 |
dtype=th.bool,
|
113 |
device=device,
|
114 |
),
|
|
|
|
|
|
|
|
|
115 |
)
|
116 |
|
117 |
# Sample from the base model.
|
@@ -124,10 +187,10 @@ def sample(prompt):
|
|
124 |
progress=True,
|
125 |
model_kwargs=model_kwargs,
|
126 |
cond_fn=None,
|
|
|
127 |
)[:batch_size]
|
128 |
model.del_cache()
|
129 |
|
130 |
-
|
131 |
##############################
|
132 |
# Upsample the 64x64 samples #
|
133 |
##############################
|
@@ -151,12 +214,16 @@ def sample(prompt):
|
|
151 |
dtype=th.bool,
|
152 |
device=device,
|
153 |
),
|
|
|
|
|
|
|
|
|
154 |
)
|
155 |
|
156 |
# Sample from the base model.
|
157 |
model_up.del_cache()
|
158 |
up_shape = (batch_size, 3, options_up["image_size"], options_up["image_size"])
|
159 |
-
up_samples = diffusion_up.
|
160 |
model_up,
|
161 |
up_shape,
|
162 |
noise=th.randn(up_shape, device=device) * upsample_temp,
|
@@ -165,32 +232,30 @@ def sample(prompt):
|
|
165 |
progress=True,
|
166 |
model_kwargs=model_kwargs,
|
167 |
cond_fn=None,
|
|
|
168 |
)[:batch_size]
|
169 |
model_up.del_cache()
|
170 |
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
iface = gr.Interface(fn=
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
description=description,
|
193 |
-
article=article,
|
194 |
-
examples=examples,
|
195 |
enable_queue=True)
|
196 |
-
iface.launch(
|
|
|
1 |
+
import subprocess
|
2 |
+
subprocess.run('pip install -e .', shell=True)
|
3 |
|
4 |
+
print("Installed the repo!")
|
|
|
|
|
5 |
|
6 |
+
# GLIDE imports
|
7 |
+
from typing import Tuple
|
|
|
8 |
|
9 |
+
from IPython.display import display
|
10 |
from PIL import Image
|
11 |
+
import PIL
|
12 |
+
import PIL.ImageOps
|
13 |
+
import numpy as np
|
14 |
import torch as th
|
15 |
+
import torch.nn.functional as F
|
16 |
|
17 |
from glide_text2im.download import load_checkpoint
|
18 |
from glide_text2im.model_creation import (
|
|
|
21 |
model_and_diffusion_defaults_upsampler
|
22 |
)
|
23 |
|
24 |
+
# gradio app imports
|
25 |
+
import gradio as gr
|
26 |
+
|
27 |
+
from torchvision.transforms import ToTensor, ToPILImage
|
28 |
+
image_to_tensor = ToTensor()
|
29 |
+
tensor_to_image = ToPILImage()
|
30 |
|
31 |
# This notebook supports both CPU and GPU.
|
32 |
# On CPU, generating one sample may take on the order of 20 minutes.
|
|
|
37 |
|
38 |
# Create base model.
|
39 |
options = model_and_diffusion_defaults()
|
40 |
+
options['inpaint'] = True
|
41 |
options['use_fp16'] = has_cuda
|
42 |
options['timestep_respacing'] = '100' # use 100 diffusion steps for fast sampling
|
43 |
model, diffusion = create_model_and_diffusion(**options)
|
|
|
45 |
if has_cuda:
|
46 |
model.convert_to_fp16()
|
47 |
model.to(device)
|
48 |
+
model.load_state_dict(load_checkpoint('base-inpaint', device))
|
49 |
print('total base parameters', sum(x.numel() for x in model.parameters()))
|
50 |
|
51 |
# Create upsampler model.
|
52 |
options_up = model_and_diffusion_defaults_upsampler()
|
53 |
+
options_up['inpaint'] = True
|
54 |
options_up['use_fp16'] = has_cuda
|
55 |
options_up['timestep_respacing'] = 'fast27' # use 27 diffusion steps for very fast sampling
|
56 |
model_up, diffusion_up = create_model_and_diffusion(**options_up)
|
|
|
58 |
if has_cuda:
|
59 |
model_up.convert_to_fp16()
|
60 |
model_up.to(device)
|
61 |
+
model_up.load_state_dict(load_checkpoint('upsample-inpaint', device))
|
62 |
print('total upsampler parameters', sum(x.numel() for x in model_up.parameters()))
|
63 |
|
64 |
+
# Sampling parameters
|
65 |
+
batch_size = 1
|
66 |
+
guidance_scale = 5.0
|
67 |
|
68 |
+
# Tune this parameter to control the sharpness of 256x256 images.
|
69 |
+
# A value of 1.0 is sharper, but sometimes results in grainy artifacts.
|
70 |
+
upsample_temp = 0.997
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
+
# Create an classifier-free guidance sampling function
|
73 |
def model_fn(x_t, ts, **kwargs):
|
74 |
half = x_t[: len(x_t) // 2]
|
75 |
combined = th.cat([half, half], dim=0)
|
|
|
80 |
eps = th.cat([half_eps, half_eps], dim=0)
|
81 |
return th.cat([eps, rest], dim=1)
|
82 |
|
83 |
+
def denoised_fn(x_start):
|
84 |
+
# Force the model to have the exact right x_start predictions
|
85 |
+
# for the part of the image which is known.
|
86 |
+
return (
|
87 |
+
x_start * (1 - model_kwargs['inpaint_mask'])
|
88 |
+
+ model_kwargs['inpaint_image'] * model_kwargs['inpaint_mask']
|
89 |
+
)
|
90 |
+
|
91 |
+
def show_images(batch: th.Tensor):
|
92 |
+
""" Display a batch of images inline. """
|
93 |
+
scaled = ((batch + 1)*127.5).round().clamp(0,255).to(th.uint8).cpu()
|
94 |
+
reshaped = scaled.permute(2, 0, 3, 1).reshape([batch.shape[2], -1, 3])
|
95 |
+
return Image.fromarray(reshaped.numpy())
|
96 |
+
|
97 |
+
def read_image(path: str, size: int = 256) -> Tuple[th.Tensor, th.Tensor]:
|
98 |
+
pil_img = Image.open(path).convert('RGB')
|
99 |
+
pil_img = pil_img.resize((size, size), resample=Image.BICUBIC)
|
100 |
+
img = np.array(pil_img)
|
101 |
+
return th.from_numpy(img)[None].permute(0, 3, 1, 2).float() / 127.5 - 1
|
102 |
|
103 |
+
def read_mask(path: str, size: int = 256) -> Tuple[th.Tensor, th.Tensor]:
|
104 |
+
#pil_img = PIL.Image.open(path).convert('L')
|
105 |
+
pil_img_full = PIL.Image.open(path).convert('RGBA')
|
106 |
+
#image = Image.open( inputImagePath ).convert( 'RGBA' )
|
107 |
+
pil_img = pil_img_full.getchannel( 'A' ) # Mode 'L'
|
108 |
|
109 |
+
# pil_img = PIL.ImageOps.invert(pil_img)
|
110 |
+
pil_img = pil_img.resize((size, size), resample=PIL.Image.BICUBIC)
|
111 |
+
img = np.array(pil_img)[..., np.newaxis]
|
112 |
+
return th.from_numpy(img)[None].permute(0, 3, 1, 2).float() / 255.0
|
113 |
+
|
114 |
+
|
115 |
+
def pil_to_numpy(pil_img: Image) -> Tuple[th.Tensor, th.Tensor]:
|
116 |
+
img = np.array(pil_img)
|
117 |
+
return th.from_numpy(img)[None].permute(0, 3, 1, 2).float() / 127.5 - 1
|
118 |
+
|
119 |
+
model_kwargs = dict()
|
120 |
+
def inpaint(input_img, input_img_with_mask, prompt):
|
121 |
+
|
122 |
+
print(prompt)
|
123 |
+
|
124 |
+
# Save as png for later mask detection :)
|
125 |
+
input_img_256 = input_img.convert('RGB').resize((256, 256), resample=Image.BICUBIC)
|
126 |
+
input_img_64 = input_img.convert('RGB').resize((64, 64), resample=Image.BICUBIC)
|
127 |
+
|
128 |
+
input_img_with_mask_64 = input_img.convert('RGBA').getchannel('A').resize((64, 64), resample=Image.BICUBIC)
|
129 |
+
|
130 |
+
# Source image we are inpainting
|
131 |
+
source_image_256 = pil_to_numpy(input_img_256)
|
132 |
+
source_image_64 = pil_to_numpy(input_img_64)
|
133 |
+
|
134 |
+
# Since gradio doesn't supply which pixels were drawn, we need to find it ourselves!
|
135 |
+
# Assuming that all black pixels are meant for inpainting.
|
136 |
+
# input_img_with_mask_64 = input_img_with_mask.convert('L').resize((64, 64), resample=Image.BICUBIC)
|
137 |
+
gray_scale_source_image = image_to_tensor(input_img_with_mask_64)
|
138 |
+
source_mask_64 = (gray_scale_source_image!=0).float()
|
139 |
+
source_mask_64_img = tensor_to_image(source_mask_64)
|
140 |
+
|
141 |
+
# The mask should always be a boolean 64x64 mask, and then we
|
142 |
+
# can upsample it for the second stage.
|
143 |
+
source_mask_64 = source_mask_64.unsqueeze(0)
|
144 |
+
source_mask_256 = F.interpolate(source_mask_64, (256, 256), mode='nearest')
|
145 |
|
|
|
|
|
|
|
146 |
|
147 |
##############################
|
148 |
# Sample from the base model #
|
|
|
161 |
)
|
162 |
|
163 |
# Pack the tokens together into model kwargs.
|
164 |
+
global model_kwargs
|
165 |
model_kwargs = dict(
|
166 |
tokens=th.tensor(
|
167 |
[tokens] * batch_size + [uncond_tokens] * batch_size, device=device
|
|
|
171 |
dtype=th.bool,
|
172 |
device=device,
|
173 |
),
|
174 |
+
|
175 |
+
# Masked inpainting image
|
176 |
+
inpaint_image=(source_image_64 * source_mask_64).repeat(full_batch_size, 1, 1, 1).to(device),
|
177 |
+
inpaint_mask=source_mask_64.repeat(full_batch_size, 1, 1, 1).to(device),
|
178 |
)
|
179 |
|
180 |
# Sample from the base model.
|
|
|
187 |
progress=True,
|
188 |
model_kwargs=model_kwargs,
|
189 |
cond_fn=None,
|
190 |
+
denoised_fn=denoised_fn,
|
191 |
)[:batch_size]
|
192 |
model.del_cache()
|
193 |
|
|
|
194 |
##############################
|
195 |
# Upsample the 64x64 samples #
|
196 |
##############################
|
|
|
214 |
dtype=th.bool,
|
215 |
device=device,
|
216 |
),
|
217 |
+
|
218 |
+
# Masked inpainting image.
|
219 |
+
inpaint_image=(source_image_256 * source_mask_256).repeat(batch_size, 1, 1, 1).to(device),
|
220 |
+
inpaint_mask=source_mask_256.repeat(batch_size, 1, 1, 1).to(device),
|
221 |
)
|
222 |
|
223 |
# Sample from the base model.
|
224 |
model_up.del_cache()
|
225 |
up_shape = (batch_size, 3, options_up["image_size"], options_up["image_size"])
|
226 |
+
up_samples = diffusion_up.p_sample_loop(
|
227 |
model_up,
|
228 |
up_shape,
|
229 |
noise=th.randn(up_shape, device=device) * upsample_temp,
|
|
|
232 |
progress=True,
|
233 |
model_kwargs=model_kwargs,
|
234 |
cond_fn=None,
|
235 |
+
denoised_fn=denoised_fn,
|
236 |
)[:batch_size]
|
237 |
model_up.del_cache()
|
238 |
|
239 |
+
return source_mask_64_img, show_images(up_samples)
|
240 |
+
|
241 |
+
gradio_inputs = [gr.inputs.Image(type='pil',
|
242 |
+
label="Input Image"),
|
243 |
+
gr.inputs.Image(type='pil',
|
244 |
+
label="Input Image With Mask"),
|
245 |
+
gr.inputs.Textbox(label='Conditional Text to Inpaint')]
|
246 |
+
|
247 |
+
# gradio_outputs = [gr.outputs.Image(label='Auto-Detected Mask (From drawn black pixels)')]
|
248 |
+
|
249 |
+
gradio_outputs = [gr.outputs.Image(label='Auto-Detected Mask (From drawn black pixels)'),
|
250 |
+
gr.outputs.Image(label='Inpainted Image')]
|
251 |
+
examples = [['grass.png', 'grass_with_mask.png', 'a corgi in a field']]
|
252 |
+
|
253 |
+
title = "GLIDE Inpaint"
|
254 |
+
description = "[WARNING: Queue times may take 4-6 minutes per person if there's no GPU! If there is a GPU, it'll take around 60 seconds] Using GLIDE to inpaint black regions of an input image! Instructions: 1) For the 'Input Image', upload an image. 2) For the 'Input Image with Mask', draw a black-colored mask (either manually with something like Paint, or by using gradio's built-in image editor & add a black-colored shape) IT MUST BE BLACK COLOR, but doesn't have to be rectangular! This is because it auto-detects the mask based on 0 (black) pixel values! 3) For the Conditional Text, type something you'd like to see the black region get filled in with :)"
|
255 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2112.10741' target='_blank'>GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models</a> | <a href='https://github.com/openai/glide-text2im' target='_blank'>Github Repo</a> | <img src='https://visitor-badge.glitch.me/badge?page_id=epoching_glide_inpaint' alt='visitor badge'></p>"
|
256 |
+
iface = gr.Interface(fn=inpaint, inputs=gradio_inputs,
|
257 |
+
outputs=gradio_outputs,
|
258 |
+
examples=examples, title=title,
|
259 |
+
description=description, article=article,
|
|
|
|
|
|
|
260 |
enable_queue=True)
|
261 |
+
iface.launch()
|
grass.png
ADDED
![]() |
grass_with_mask.png
ADDED
![]() |
notebooks/clip_guided.ipynb
CHANGED
@@ -1,5 +1,16 @@
|
|
1 |
{
|
2 |
"cells": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
"execution_count": null,
|
@@ -227,7 +238,8 @@
|
|
227 |
"nbconvert_exporter": "python",
|
228 |
"pygments_lexer": "ipython3",
|
229 |
"version": "3.7.3"
|
230 |
-
}
|
|
|
231 |
},
|
232 |
"nbformat": 4,
|
233 |
"nbformat_minor": 2
|
|
|
1 |
{
|
2 |
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"# Run this line in Colab to install the package if it is\n",
|
10 |
+
"# not already installed.\n",
|
11 |
+
"!pip install git+https://github.com/openai/glide-text2im"
|
12 |
+
]
|
13 |
+
},
|
14 |
{
|
15 |
"cell_type": "code",
|
16 |
"execution_count": null,
|
|
|
238 |
"nbconvert_exporter": "python",
|
239 |
"pygments_lexer": "ipython3",
|
240 |
"version": "3.7.3"
|
241 |
+
},
|
242 |
+
"accelerator": "GPU"
|
243 |
},
|
244 |
"nbformat": 4,
|
245 |
"nbformat_minor": 2
|
notebooks/inpaint.ipynb
CHANGED
@@ -1,5 +1,16 @@
|
|
1 |
{
|
2 |
"cells": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
"execution_count": null,
|
@@ -283,7 +294,8 @@
|
|
283 |
"nbconvert_exporter": "python",
|
284 |
"pygments_lexer": "ipython3",
|
285 |
"version": "3.7.3"
|
286 |
-
}
|
|
|
287 |
},
|
288 |
"nbformat": 4,
|
289 |
"nbformat_minor": 2
|
|
|
1 |
{
|
2 |
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"# Run this line in Colab to install the package if it is\n",
|
10 |
+
"# not already installed.\n",
|
11 |
+
"!pip install git+https://github.com/openai/glide-text2im"
|
12 |
+
]
|
13 |
+
},
|
14 |
{
|
15 |
"cell_type": "code",
|
16 |
"execution_count": null,
|
|
|
294 |
"nbconvert_exporter": "python",
|
295 |
"pygments_lexer": "ipython3",
|
296 |
"version": "3.7.3"
|
297 |
+
},
|
298 |
+
"accelerator": "GPU"
|
299 |
},
|
300 |
"nbformat": 4,
|
301 |
"nbformat_minor": 2
|
notebooks/text2im.ipynb
CHANGED
@@ -1,5 +1,16 @@
|
|
1 |
{
|
2 |
"cells": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
"execution_count": null,
|
@@ -232,7 +243,8 @@
|
|
232 |
"nbconvert_exporter": "python",
|
233 |
"pygments_lexer": "ipython3",
|
234 |
"version": "3.7.3"
|
235 |
-
}
|
|
|
236 |
},
|
237 |
"nbformat": 4,
|
238 |
"nbformat_minor": 2
|
|
|
1 |
{
|
2 |
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"# Run this line in Colab to install the package if it is\n",
|
10 |
+
"# not already installed.\n",
|
11 |
+
"!pip install git+https://github.com/openai/glide-text2im"
|
12 |
+
]
|
13 |
+
},
|
14 |
{
|
15 |
"cell_type": "code",
|
16 |
"execution_count": null,
|
|
|
243 |
"nbconvert_exporter": "python",
|
244 |
"pygments_lexer": "ipython3",
|
245 |
"version": "3.7.3"
|
246 |
+
},
|
247 |
+
"accelerator": "GPU"
|
248 |
},
|
249 |
"nbformat": 4,
|
250 |
"nbformat_minor": 2
|
ocean.jpg
ADDED
![]() |
ocean_with_mask.png
ADDED
![]() |
requirements.txt
CHANGED
@@ -1,4 +1,2 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
uvicorn
|
4 |
-
regex
|
|
|
1 |
+
gradio
|
2 |
+
torchvision
|
|
|
|
server.py
DELETED
@@ -1,175 +0,0 @@
|
|
1 |
-
import base64
|
2 |
-
from io import BytesIO
|
3 |
-
from fastapi import FastAPI
|
4 |
-
|
5 |
-
from PIL import Image
|
6 |
-
import torch as th
|
7 |
-
|
8 |
-
from glide_text2im.download import load_checkpoint
|
9 |
-
from glide_text2im.model_creation import (
|
10 |
-
create_model_and_diffusion,
|
11 |
-
model_and_diffusion_defaults,
|
12 |
-
model_and_diffusion_defaults_upsampler
|
13 |
-
)
|
14 |
-
|
15 |
-
print("Loading models...")
|
16 |
-
app = FastAPI()
|
17 |
-
|
18 |
-
# This notebook supports both CPU and GPU.
|
19 |
-
# On CPU, generating one sample may take on the order of 20 minutes.
|
20 |
-
# On a GPU, it should be under a minute.
|
21 |
-
|
22 |
-
has_cuda = th.cuda.is_available()
|
23 |
-
device = th.device('cpu' if not has_cuda else 'cuda')
|
24 |
-
|
25 |
-
# Create base model.
|
26 |
-
options = model_and_diffusion_defaults()
|
27 |
-
options['use_fp16'] = has_cuda
|
28 |
-
options['timestep_respacing'] = '100' # use 100 diffusion steps for fast sampling
|
29 |
-
model, diffusion = create_model_and_diffusion(**options)
|
30 |
-
model.eval()
|
31 |
-
if has_cuda:
|
32 |
-
model.convert_to_fp16()
|
33 |
-
model.to(device)
|
34 |
-
model.load_state_dict(load_checkpoint('base', device))
|
35 |
-
print('total base parameters', sum(x.numel() for x in model.parameters()))
|
36 |
-
|
37 |
-
# Create upsampler model.
|
38 |
-
options_up = model_and_diffusion_defaults_upsampler()
|
39 |
-
options_up['use_fp16'] = has_cuda
|
40 |
-
options_up['timestep_respacing'] = 'fast27' # use 27 diffusion steps for very fast sampling
|
41 |
-
model_up, diffusion_up = create_model_and_diffusion(**options_up)
|
42 |
-
model_up.eval()
|
43 |
-
if has_cuda:
|
44 |
-
model_up.convert_to_fp16()
|
45 |
-
model_up.to(device)
|
46 |
-
model_up.load_state_dict(load_checkpoint('upsample', device))
|
47 |
-
print('total upsampler parameters', sum(x.numel() for x in model_up.parameters()))
|
48 |
-
|
49 |
-
|
50 |
-
def get_images(batch: th.Tensor):
|
51 |
-
""" Display a batch of images inline. """
|
52 |
-
scaled = ((batch + 1)*127.5).round().clamp(0,255).to(th.uint8).cpu()
|
53 |
-
reshaped = scaled.permute(2, 0, 3, 1).reshape([batch.shape[2], -1, 3])
|
54 |
-
Image.fromarray(reshaped.numpy())
|
55 |
-
|
56 |
-
|
57 |
-
# Create a classifier-free guidance sampling function
|
58 |
-
guidance_scale = 3.0
|
59 |
-
|
60 |
-
def model_fn(x_t, ts, **kwargs):
|
61 |
-
half = x_t[: len(x_t) // 2]
|
62 |
-
combined = th.cat([half, half], dim=0)
|
63 |
-
model_out = model(combined, ts, **kwargs)
|
64 |
-
eps, rest = model_out[:, :3], model_out[:, 3:]
|
65 |
-
cond_eps, uncond_eps = th.split(eps, len(eps) // 2, dim=0)
|
66 |
-
half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
|
67 |
-
eps = th.cat([half_eps, half_eps], dim=0)
|
68 |
-
return th.cat([eps, rest], dim=1)
|
69 |
-
|
70 |
-
|
71 |
-
@app.get("/")
|
72 |
-
def read_root():
|
73 |
-
return {"glide!"}
|
74 |
-
|
75 |
-
@app.get("/{generate}")
|
76 |
-
def sample(prompt):
|
77 |
-
# Sampling parameters
|
78 |
-
batch_size = 1
|
79 |
-
|
80 |
-
# Tune this parameter to control the sharpness of 256x256 images.
|
81 |
-
# A value of 1.0 is sharper, but sometimes results in grainy artifacts.
|
82 |
-
upsample_temp = 0.997
|
83 |
-
|
84 |
-
##############################
|
85 |
-
# Sample from the base model #
|
86 |
-
##############################
|
87 |
-
|
88 |
-
# Create the text tokens to feed to the model.
|
89 |
-
tokens = model.tokenizer.encode(prompt)
|
90 |
-
tokens, mask = model.tokenizer.padded_tokens_and_mask(
|
91 |
-
tokens, options['text_ctx']
|
92 |
-
)
|
93 |
-
|
94 |
-
# Create the classifier-free guidance tokens (empty)
|
95 |
-
full_batch_size = batch_size * 2
|
96 |
-
uncond_tokens, uncond_mask = model.tokenizer.padded_tokens_and_mask(
|
97 |
-
[], options['text_ctx']
|
98 |
-
)
|
99 |
-
|
100 |
-
# Pack the tokens together into model kwargs.
|
101 |
-
model_kwargs = dict(
|
102 |
-
tokens=th.tensor(
|
103 |
-
[tokens] * batch_size + [uncond_tokens] * batch_size, device=device
|
104 |
-
),
|
105 |
-
mask=th.tensor(
|
106 |
-
[mask] * batch_size + [uncond_mask] * batch_size,
|
107 |
-
dtype=th.bool,
|
108 |
-
device=device,
|
109 |
-
),
|
110 |
-
)
|
111 |
-
|
112 |
-
# Sample from the base model.
|
113 |
-
model.del_cache()
|
114 |
-
samples = diffusion.p_sample_loop(
|
115 |
-
model_fn,
|
116 |
-
(full_batch_size, 3, options["image_size"], options["image_size"]),
|
117 |
-
device=device,
|
118 |
-
clip_denoised=True,
|
119 |
-
progress=True,
|
120 |
-
model_kwargs=model_kwargs,
|
121 |
-
cond_fn=None,
|
122 |
-
)[:batch_size]
|
123 |
-
model.del_cache()
|
124 |
-
|
125 |
-
|
126 |
-
##############################
|
127 |
-
# Upsample the 64x64 samples #
|
128 |
-
##############################
|
129 |
-
|
130 |
-
tokens = model_up.tokenizer.encode(prompt)
|
131 |
-
tokens, mask = model_up.tokenizer.padded_tokens_and_mask(
|
132 |
-
tokens, options_up['text_ctx']
|
133 |
-
)
|
134 |
-
|
135 |
-
# Create the model conditioning dict.
|
136 |
-
model_kwargs = dict(
|
137 |
-
# Low-res image to upsample.
|
138 |
-
low_res=((samples+1)*127.5).round()/127.5 - 1,
|
139 |
-
|
140 |
-
# Text tokens
|
141 |
-
tokens=th.tensor(
|
142 |
-
[tokens] * batch_size, device=device
|
143 |
-
),
|
144 |
-
mask=th.tensor(
|
145 |
-
[mask] * batch_size,
|
146 |
-
dtype=th.bool,
|
147 |
-
device=device,
|
148 |
-
),
|
149 |
-
)
|
150 |
-
|
151 |
-
# Sample from the base model.
|
152 |
-
model_up.del_cache()
|
153 |
-
up_shape = (batch_size, 3, options_up["image_size"], options_up["image_size"])
|
154 |
-
up_samples = diffusion_up.ddim_sample_loop(
|
155 |
-
model_up,
|
156 |
-
up_shape,
|
157 |
-
noise=th.randn(up_shape, device=device) * upsample_temp,
|
158 |
-
device=device,
|
159 |
-
clip_denoised=True,
|
160 |
-
progress=True,
|
161 |
-
model_kwargs=model_kwargs,
|
162 |
-
cond_fn=None,
|
163 |
-
)[:batch_size]
|
164 |
-
model_up.del_cache()
|
165 |
-
|
166 |
-
# Show the output
|
167 |
-
image = get_images(up_samples)
|
168 |
-
image = to_base64(image)
|
169 |
-
return {"image": image}
|
170 |
-
|
171 |
-
|
172 |
-
def to_base64(pil_image):
|
173 |
-
buffered = BytesIO()
|
174 |
-
pil_image.save(buffered, format="JPEG")
|
175 |
-
return base64.b64encode(buffered.getvalue())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
setup.py
CHANGED
@@ -2,7 +2,19 @@ from setuptools import setup
|
|
2 |
|
3 |
setup(
|
4 |
name="glide-text2im",
|
5 |
-
packages=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
install_requires=[
|
7 |
"Pillow",
|
8 |
"attrs",
|
@@ -10,6 +22,8 @@ setup(
|
|
10 |
"filelock",
|
11 |
"requests",
|
12 |
"tqdm",
|
|
|
|
|
13 |
],
|
14 |
author="OpenAI",
|
15 |
)
|
|
|
2 |
|
3 |
setup(
|
4 |
name="glide-text2im",
|
5 |
+
packages=[
|
6 |
+
"glide_text2im",
|
7 |
+
"glide_text2im.clip",
|
8 |
+
"glide_text2im.tokenizer",
|
9 |
+
],
|
10 |
+
package_data={
|
11 |
+
"glide_text2im.tokenizer": [
|
12 |
+
"bpe_simple_vocab_16e6.txt.gz",
|
13 |
+
"encoder.json.gz",
|
14 |
+
"vocab.bpe.gz",
|
15 |
+
],
|
16 |
+
"glide_text2im.clip": ["config.yaml"],
|
17 |
+
},
|
18 |
install_requires=[
|
19 |
"Pillow",
|
20 |
"attrs",
|
|
|
22 |
"filelock",
|
23 |
"requests",
|
24 |
"tqdm",
|
25 |
+
"ftfy",
|
26 |
+
"regex",
|
27 |
],
|
28 |
author="OpenAI",
|
29 |
)
|