from fastapi import FastAPI from pydantic import BaseModel from transformers import AutoModelForCausalLM, AutoTokenizer import torch import uvicorn app = FastAPI() model_id = "GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto") class ChatRequest(BaseModel): prompt: str max_new_tokens: int = 256 temperature: float = 0.7 top_p: float = 0.95 @app.post("/chat") async def chat(request: ChatRequest): inputs = tokenizer(request.prompt, return_tensors="pt").to(model.device) outputs = model.generate( **inputs, max_new_tokens=request.max_new_tokens, temperature=request.temperature, top_p=request.top_p, do_sample=True, pad_token_id=tokenizer.eos_token_id, ) result = tokenizer.decode(outputs[0], skip_special_tokens=True) return {"response": result} # This will only run locally or in Spaces, not if you import this module if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=7860)