Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,311 +1,26 @@
|
|
1 |
-
import spaces
|
2 |
import gradio as gr
|
3 |
from transformers import AutoModel, AutoProcessor
|
4 |
from PIL import Image
|
5 |
import torch
|
6 |
import numpy as np
|
7 |
-
import sys
|
8 |
-
import os
|
9 |
-
from pathlib import Path
|
10 |
-
import shutil
|
11 |
-
import types
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
#
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
setattr(lambertxiao, 'Vision-Language-Vision-Captioner-Qwen2', vision_captioner)
|
34 |
-
|
35 |
-
# Also handle the dot notation
|
36 |
-
sys.modules['transformers_modules.lambertxiao.Vision-Language-Vision-Captioner-Qwen2.5-3B'] = vision_captioner
|
37 |
-
|
38 |
-
def fix_imports_in_file(file_path):
|
39 |
-
"""Fix import statements in a Python file"""
|
40 |
-
try:
|
41 |
-
with open(file_path, 'r', encoding='utf-8') as f:
|
42 |
-
content = f.read()
|
43 |
-
|
44 |
-
original_content = content
|
45 |
-
|
46 |
-
# Fix relative imports
|
47 |
-
replacements = [
|
48 |
-
("from .De_DiffusionV2_Image import", "from De_DiffusionV2_Image import"),
|
49 |
-
("from .modeling_clip import", "from modeling_clip import"),
|
50 |
-
("from .configuration_clip import", "from configuration_clip import"),
|
51 |
-
("from .modeling_florence2 import", "from modeling_florence2 import"),
|
52 |
-
("from .configuration_florence2 import", "from configuration_florence2 import"),
|
53 |
-
("from .processing_florence2 import", "from processing_florence2 import"),
|
54 |
-
("from .utils import", "from utils import"),
|
55 |
-
("from .build_unfreeze import", "from build_unfreeze import"),
|
56 |
-
("from .sd_config import", "from sd_config import"),
|
57 |
-
]
|
58 |
-
|
59 |
-
for old, new in replacements:
|
60 |
-
content = content.replace(old, new)
|
61 |
-
|
62 |
-
# Remove or fix the problematic transformers_modules imports
|
63 |
-
content = content.replace(
|
64 |
-
"from transformers_modules.lambertxiao.Vision-Language-Vision-Captioner-Qwen2",
|
65 |
-
"# Fixed import - removed transformers_modules prefix\nfrom"
|
66 |
-
)
|
67 |
-
|
68 |
-
if content != original_content:
|
69 |
-
with open(file_path, 'w', encoding='utf-8') as f:
|
70 |
-
f.write(content)
|
71 |
-
return True
|
72 |
-
except Exception as e:
|
73 |
-
print(f"Error fixing {file_path}: {e}")
|
74 |
-
return False
|
75 |
-
|
76 |
-
def monitor_and_fix_downloads():
|
77 |
-
"""Monitor the cache directory and fix files as they are downloaded"""
|
78 |
-
cache_base = Path.home() / ".cache" / "huggingface" / "modules" / "transformers_modules"
|
79 |
-
|
80 |
-
# Create a set to track fixed files
|
81 |
-
fixed_files = set()
|
82 |
-
|
83 |
-
def fix_new_files():
|
84 |
-
# Look for Python files in the cache
|
85 |
-
for py_file in cache_base.rglob("*.py"):
|
86 |
-
if str(py_file) not in fixed_files:
|
87 |
-
if fix_imports_in_file(py_file):
|
88 |
-
print(f"✓ Fixed imports in: {py_file.name}")
|
89 |
-
fixed_files.add(str(py_file))
|
90 |
-
|
91 |
-
return fix_new_files
|
92 |
-
|
93 |
-
# Create fake module structure first
|
94 |
-
print("🔧 Setting up module structure...")
|
95 |
-
create_fake_module_structure()
|
96 |
-
|
97 |
-
# Setup file monitoring
|
98 |
-
fix_files = monitor_and_fix_downloads()
|
99 |
-
|
100 |
-
# Custom import hook to fix files on the fly
|
101 |
-
class ImportFixer:
|
102 |
-
def __init__(self):
|
103 |
-
self.fixed_modules = set()
|
104 |
-
|
105 |
-
def find_spec(self, name, path, target=None):
|
106 |
-
# Fix files whenever an import is attempted
|
107 |
-
fix_files()
|
108 |
-
return None
|
109 |
-
|
110 |
-
# Install the import hook
|
111 |
-
import_fixer = ImportFixer()
|
112 |
-
sys.meta_path.insert(0, import_fixer)
|
113 |
-
|
114 |
-
print("📥 Downloading and loading model...")
|
115 |
-
|
116 |
-
# First attempt - this might fail but will download files
|
117 |
-
try:
|
118 |
-
from transformers import AutoConfig
|
119 |
-
|
120 |
-
# Add paths before attempting to load
|
121 |
-
cache_base = Path.home() / ".cache" / "huggingface" / "modules" / "transformers_modules"
|
122 |
-
possible_paths = [
|
123 |
-
cache_base / "lambertxiao" / "Vision-Language-Vision-Captioner-Qwen2.5-3B",
|
124 |
-
cache_base / "lambertxiao",
|
125 |
-
cache_base,
|
126 |
-
]
|
127 |
-
|
128 |
-
for path in possible_paths:
|
129 |
-
if path.exists() and str(path) not in sys.path:
|
130 |
-
sys.path.insert(0, str(path))
|
131 |
-
|
132 |
-
# Try to load config - this triggers download
|
133 |
-
config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True)
|
134 |
-
print("✓ Config loaded successfully")
|
135 |
-
|
136 |
-
except Exception as e:
|
137 |
-
print(f"⚠️ Initial load failed (expected): {e}")
|
138 |
-
print("🔧 Fixing downloaded files...")
|
139 |
-
|
140 |
-
# Fix all downloaded files
|
141 |
-
fix_files()
|
142 |
-
|
143 |
-
# Find and add all relevant directories to path
|
144 |
-
cache_base = Path.home() / ".cache" / "huggingface" / "modules" / "transformers_modules"
|
145 |
-
for subdir in cache_base.rglob("*"):
|
146 |
-
if subdir.is_dir() and "lambertxiao" in str(subdir):
|
147 |
-
if str(subdir) not in sys.path:
|
148 |
-
sys.path.insert(0, str(subdir))
|
149 |
-
|
150 |
-
# Now load the model - should work after fixes
|
151 |
-
print("\n📊 Loading model with fixed imports...")
|
152 |
-
try:
|
153 |
-
# Remove the import hook to avoid interference
|
154 |
-
sys.meta_path.remove(import_fixer)
|
155 |
-
|
156 |
-
# Load the model
|
157 |
-
model = AutoModel.from_pretrained(
|
158 |
-
model_name_or_path,
|
159 |
-
trust_remote_code=True,
|
160 |
-
low_cpu_mem_usage=False,
|
161 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
162 |
-
)
|
163 |
-
|
164 |
-
# Move to GPU if available
|
165 |
-
if torch.cuda.is_available():
|
166 |
-
model = model.to("cuda")
|
167 |
-
print(f"✓ Model loaded on GPU: {torch.cuda.get_device_name(0)}")
|
168 |
-
else:
|
169 |
-
model = model.to("cpu")
|
170 |
-
print("✓ Model loaded on CPU")
|
171 |
-
|
172 |
-
except Exception as e:
|
173 |
-
print(f"❌ Error loading model: {e}")
|
174 |
-
|
175 |
-
# Last resort - try with minimal setup
|
176 |
-
print("🔧 Attempting minimal setup...")
|
177 |
-
|
178 |
-
# Clear any problematic imports
|
179 |
-
modules_to_remove = [k for k in sys.modules.keys() if 'lambertxiao' in k or 'Vision-Language-Vision' in k]
|
180 |
-
for module in modules_to_remove:
|
181 |
-
del sys.modules[module]
|
182 |
-
|
183 |
-
# Re-create fake modules
|
184 |
-
create_fake_module_structure()
|
185 |
-
|
186 |
-
# Try one more time
|
187 |
-
model = AutoModel.from_pretrained(
|
188 |
-
model_name_or_path,
|
189 |
-
trust_remote_code=True,
|
190 |
-
device_map="auto"
|
191 |
-
)
|
192 |
-
|
193 |
-
print("\n✅ Model setup complete!")
|
194 |
-
|
195 |
-
def drop_incomplete_tail(text):
|
196 |
-
"""Remove incomplete sentences from the end of text"""
|
197 |
-
if not text:
|
198 |
-
return ""
|
199 |
-
|
200 |
-
sentences = text.split('.')
|
201 |
-
complete_sentences = [s.strip() for s in sentences if s.strip()]
|
202 |
-
|
203 |
-
if not text.strip().endswith('.') and complete_sentences:
|
204 |
-
complete_sentences = complete_sentences[:-1]
|
205 |
-
|
206 |
-
result = '. '.join(complete_sentences)
|
207 |
-
if result and complete_sentences:
|
208 |
-
result += '.'
|
209 |
-
|
210 |
-
return result
|
211 |
-
|
212 |
-
@spaces.GPU(duration=120)
|
213 |
-
def caption_image(image):
|
214 |
-
"""Generate caption for the image"""
|
215 |
-
try:
|
216 |
-
# Ensure model is on GPU when using spaces.GPU
|
217 |
-
if torch.cuda.is_available():
|
218 |
-
if hasattr(model, 'device') and model.device.type != 'cuda':
|
219 |
-
model.to("cuda")
|
220 |
-
|
221 |
-
with torch.no_grad():
|
222 |
-
try:
|
223 |
-
outputs = model([image], 77)
|
224 |
-
except RuntimeError as e:
|
225 |
-
if "CUDA error" in str(e) or "device-side assert" in str(e):
|
226 |
-
print(f"⚠️ CUDA error: {e}")
|
227 |
-
torch.cuda.empty_cache()
|
228 |
-
torch.cuda.synchronize()
|
229 |
-
|
230 |
-
# Retry with different approach
|
231 |
-
outputs = model.generate(images=[image], max_length=77)
|
232 |
-
else:
|
233 |
-
raise e
|
234 |
-
|
235 |
-
# Handle different output formats
|
236 |
-
if hasattr(outputs, 'generated_text'):
|
237 |
-
text = outputs.generated_text[0] if isinstance(outputs.generated_text, list) else outputs.generated_text
|
238 |
-
elif isinstance(outputs, list):
|
239 |
-
text = outputs[0]
|
240 |
-
elif isinstance(outputs, str):
|
241 |
-
text = outputs
|
242 |
-
else:
|
243 |
-
text = str(outputs)
|
244 |
-
|
245 |
-
return text
|
246 |
-
|
247 |
-
except Exception as e:
|
248 |
-
print(f"Error in caption_image: {e}")
|
249 |
-
return f"Error generating caption: {str(e)}"
|
250 |
-
|
251 |
-
def process_image(image):
|
252 |
-
"""Process input image and generate caption"""
|
253 |
-
try:
|
254 |
-
# Convert to PIL Image if needed
|
255 |
-
if isinstance(image, np.ndarray):
|
256 |
-
if image.dtype != np.uint8:
|
257 |
-
image = (np.clip(image, 0, 1) * 255).astype(np.uint8)
|
258 |
-
|
259 |
-
if len(image.shape) == 2:
|
260 |
-
image = Image.fromarray(image, mode='L').convert('RGB')
|
261 |
-
elif len(image.shape) == 3:
|
262 |
-
if image.shape[2] == 4:
|
263 |
-
image = Image.fromarray(image, mode='RGBA').convert('RGB')
|
264 |
-
else:
|
265 |
-
image = Image.fromarray(image, mode='RGB')
|
266 |
-
elif isinstance(image, Image.Image):
|
267 |
-
if image.mode != 'RGB':
|
268 |
-
image = image.convert('RGB')
|
269 |
-
|
270 |
-
# Generate caption
|
271 |
-
raw_text = caption_image(image)
|
272 |
-
|
273 |
-
# Clean up the text
|
274 |
-
cleaned_text = drop_incomplete_tail(raw_text)
|
275 |
-
|
276 |
-
return cleaned_text
|
277 |
-
|
278 |
-
except Exception as e:
|
279 |
-
print(f"Error processing image: {e}")
|
280 |
-
return f"Error: {str(e)}"
|
281 |
-
|
282 |
-
# Create Gradio interface
|
283 |
-
demo = gr.Interface(
|
284 |
-
fn=process_image,
|
285 |
-
inputs=gr.Image(type="pil", label="Upload an image"),
|
286 |
-
outputs=gr.Textbox(label="Generated Caption", lines=3),
|
287 |
-
title="Vision-Language Image Captioner",
|
288 |
-
description="Upload an image to generate a detailed caption using Vision-Language-Vision-Captioner-Qwen2.5-3B",
|
289 |
-
examples=[],
|
290 |
-
cache_examples=False,
|
291 |
-
theme=gr.themes.Soft()
|
292 |
-
)
|
293 |
-
|
294 |
-
# GPU optimizations
|
295 |
-
if torch.cuda.is_available():
|
296 |
-
device_name = torch.cuda.get_device_name(0)
|
297 |
-
print(f"\n🖥️ GPU detected: {device_name}")
|
298 |
-
|
299 |
-
if "H100" in device_name:
|
300 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
301 |
-
torch.backends.cudnn.allow_tf32 = True
|
302 |
-
torch.cuda.set_per_process_memory_fraction(0.85)
|
303 |
-
|
304 |
-
# Launch the app
|
305 |
-
if __name__ == "__main__":
|
306 |
-
print("\n🌐 Launching Gradio interface...")
|
307 |
-
demo.launch(
|
308 |
-
share=False,
|
309 |
-
debug=True,
|
310 |
-
show_error=True
|
311 |
-
)
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModel, AutoProcessor
|
3 |
from PIL import Image
|
4 |
import torch
|
5 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
model_name_or_path = "lyttt/VLV_captioner"
|
8 |
+
model = AutoModel.from_pretrained(model_name_or_path, revision="master", trust_remote_code=True,low_cpu_mem_usage=False)
|
9 |
+
|
10 |
+
# @spaces.GPU(duration=120)
|
11 |
+
def greet(image):
|
12 |
+
if image.dtype != np.uint8:
|
13 |
+
image = (np.clip(image, 0, 1) * 255).astype(np.uint8)
|
14 |
+
image = Image.fromarray(image, mode='RGB')
|
15 |
+
with torch.no_grad():
|
16 |
+
outputs = model([image], 300).generated_text[0]
|
17 |
+
def drop_incomplete_tail(text):
|
18 |
+
sentences = text.split('.')
|
19 |
+
complete_sentences = [s.strip() for s in sentences if s.strip()]
|
20 |
+
if not text.strip().endswith('.'):
|
21 |
+
complete_sentences = complete_sentences[:-1]
|
22 |
+
return '. '.join(complete_sentences) + ('.' if complete_sentences else '')
|
23 |
+
return drop_incomplete_tail(outputs)
|
24 |
+
|
25 |
+
demo = gr.Interface(fn=greet, inputs="image", outputs="text")
|
26 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|