import gradio as gr import tensorflow as tf import numpy as np from PIL import Image # Load model model = tf.keras.models.load_model("model.h5") # Class labels class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] def predict_image(img): img = img.convert("L").resize((28, 28)) img_array = np.array(img) / 255.0 img_array = 1.0 - img_array img_array = img_array.reshape(1, 28, 28) prediction = model.predict(img_array) return class_names[np.argmax(prediction)] gr.Interface(fn=predict_image, inputs=gr.Image(type="pil"), outputs="label", title="Fashion MNIST Apparel Classifier", description="Upload a clothing image to classify it.").launch()