import tensorflow as tf from tensorflow.keras import layers, models import numpy as np # Load dataset fashion_mnist = tf.keras.datasets.fashion_mnist (x_train, y_train), (x_test, y_test) = fashion_mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 # Build model model = models.Sequential([ layers.Flatten(input_shape=(28, 28)), layers.Dense(128, activation='relu'), layers.Dense(10, activation='softmax') ]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) # Train model model.fit(x_train, y_train, epochs=5, validation_split=0.1) # Save model model.save("model.h5") print("✅ Model saved as model.h5")