Spaces:
Running
Running
Create train_and_save_model.py
Browse files- train_and_save_model.py +26 -0
train_and_save_model.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
from tensorflow.keras import layers, models
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
# Load dataset
|
6 |
+
fashion_mnist = tf.keras.datasets.fashion_mnist
|
7 |
+
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
|
8 |
+
x_train, x_test = x_train / 255.0, x_test / 255.0
|
9 |
+
|
10 |
+
# Build model
|
11 |
+
model = models.Sequential([
|
12 |
+
layers.Flatten(input_shape=(28, 28)),
|
13 |
+
layers.Dense(128, activation='relu'),
|
14 |
+
layers.Dense(10, activation='softmax')
|
15 |
+
])
|
16 |
+
|
17 |
+
model.compile(optimizer='adam',
|
18 |
+
loss='sparse_categorical_crossentropy',
|
19 |
+
metrics=['accuracy'])
|
20 |
+
|
21 |
+
# Train model
|
22 |
+
model.fit(x_train, y_train, epochs=5, validation_split=0.1)
|
23 |
+
|
24 |
+
# Save model
|
25 |
+
model.save("model.h5")
|
26 |
+
print("✅ Model saved as model.h5")
|