Spaces:
Sleeping
Sleeping
Update README.md
Browse files
README.md
CHANGED
@@ -1,62 +1,27 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: apache-2.0
|
3 |
-
|
4 |
-
tags:
|
5 |
-
- text-classification
|
6 |
-
- log-analysis
|
7 |
-
- openstack
|
8 |
-
- distilbert
|
9 |
-
- fine-tuned
|
10 |
-
datasets:
|
11 |
-
- custom
|
12 |
-
language:
|
13 |
-
- en
|
14 |
-
pipeline_tag: text-classification
|
15 |
-
---
|
16 |
-
|
17 |
-
# INFRNCE BERT Log Classification Model
|
18 |
-
|
19 |
-
This is a fine-tuned DistilBERT model for classifying OpenStack Nova log entries into different operational categories.
|
20 |
|
21 |
-
## Model Details
|
22 |
|
23 |
-
- **Base Model**: distilbert-base-uncased
|
24 |
-
- **Task**: Multi-class text classification
|
25 |
-
- **Number of Labels**: 6
|
26 |
-
- **Domain**: OpenStack log analysis
|
27 |
|
28 |
-
## Labels
|
29 |
|
30 |
-
The model classifies logs into the following categories:
|
31 |
|
32 |
-
- Error_Handling, - Instance_Management, - Network_Operations, - Resource_Management, - Scheduler_Operations, - System_Operations
|
33 |
|
34 |
-
## Usage
|
35 |
|
36 |
-
```python
|
37 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
38 |
-
import torch
|
39 |
|
40 |
-
# Load the model and tokenizer
|
41 |
-
tokenizer = AutoTokenizer.from_pretrained("your-username/infrnce-bert-log-classifier")
|
42 |
-
model = AutoModelForSequenceClassification.from_pretrained("your-username/infrnce-bert-log-classifier")
|
43 |
|
44 |
-
# Example usage
|
45 |
-
log_text = "Your OpenStack log entry here"
|
46 |
-
inputs = tokenizer(log_text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
47 |
|
48 |
-
with torch.no_grad():
|
49 |
-
outputs = model(**inputs)
|
50 |
-
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
51 |
-
predicted_class_id = predictions.argmax().item()
|
52 |
|
53 |
-
|
54 |
-
```
|
55 |
-
|
56 |
-
## Training Data
|
57 |
|
58 |
-
|
59 |
|
60 |
-
## Performance
|
61 |
|
62 |
-
The model was trained with controlled accuracy to achieve optimal performance on log classification tasks.
|
|
|
1 |
---
|
2 |
+
title: Infrnce Private Api
|
3 |
+
emoji: 👁
|
4 |
+
colorFrom: green
|
5 |
+
colorTo: indigo
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 5.38.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
license: apache-2.0
|
11 |
+
short_description: infrnce-backend
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
|
|
13 |
|
|
|
|
|
|
|
|
|
14 |
|
|
|
15 |
|
|
|
16 |
|
|
|
17 |
|
|
|
18 |
|
|
|
|
|
|
|
19 |
|
|
|
|
|
|
|
20 |
|
|
|
|
|
|
|
21 |
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
---
|
|
|
|
|
|
|
24 |
|
25 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
26 |
|
|
|
27 |
|
|