kxshrx commited on
Commit
c85d12c
·
verified ·
1 Parent(s): a6dcc9d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -46
README.md CHANGED
@@ -1,62 +1,27 @@
1
  ---
 
 
 
 
 
 
 
 
2
  license: apache-2.0
3
- base_model: distilbert-base-uncased
4
- tags:
5
- - text-classification
6
- - log-analysis
7
- - openstack
8
- - distilbert
9
- - fine-tuned
10
- datasets:
11
- - custom
12
- language:
13
- - en
14
- pipeline_tag: text-classification
15
- ---
16
-
17
- # INFRNCE BERT Log Classification Model
18
-
19
- This is a fine-tuned DistilBERT model for classifying OpenStack Nova log entries into different operational categories.
20
 
21
- ## Model Details
22
 
23
- - **Base Model**: distilbert-base-uncased
24
- - **Task**: Multi-class text classification
25
- - **Number of Labels**: 6
26
- - **Domain**: OpenStack log analysis
27
 
28
- ## Labels
29
 
30
- The model classifies logs into the following categories:
31
 
32
- - Error_Handling, - Instance_Management, - Network_Operations, - Resource_Management, - Scheduler_Operations, - System_Operations
33
 
34
- ## Usage
35
 
36
- ```python
37
- from transformers import AutoTokenizer, AutoModelForSequenceClassification
38
- import torch
39
 
40
- # Load the model and tokenizer
41
- tokenizer = AutoTokenizer.from_pretrained("your-username/infrnce-bert-log-classifier")
42
- model = AutoModelForSequenceClassification.from_pretrained("your-username/infrnce-bert-log-classifier")
43
 
44
- # Example usage
45
- log_text = "Your OpenStack log entry here"
46
- inputs = tokenizer(log_text, return_tensors="pt", truncation=True, padding=True, max_length=512)
47
 
48
- with torch.no_grad():
49
- outputs = model(**inputs)
50
- predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
51
- predicted_class_id = predictions.argmax().item()
52
 
53
- print(f"Predicted class: {model.config.id2label[predicted_class_id]}")
54
- ```
55
-
56
- ## Training Data
57
 
58
- The model was trained on a curated dataset of OpenStack Nova logs with both regex-based classifications and semantic clustering.
59
 
60
- ## Performance
61
 
62
- The model was trained with controlled accuracy to achieve optimal performance on log classification tasks.
 
1
  ---
2
+ title: Infrnce Private Api
3
+ emoji: 👁
4
+ colorFrom: green
5
+ colorTo: indigo
6
+ sdk: gradio
7
+ sdk_version: 5.38.0
8
+ app_file: app.py
9
+ pinned: false
10
  license: apache-2.0
11
+ short_description: infrnce-backend
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
 
13
 
 
 
 
 
14
 
 
15
 
 
16
 
 
17
 
 
18
 
 
 
 
19
 
 
 
 
20
 
 
 
 
21
 
 
 
 
 
22
 
23
+ ---
 
 
 
24
 
25
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
26
 
 
27