Spaces:
Runtime error
Runtime error
| # Copyright 2023 Zhejiang University Team and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import math | |
| from typing import List, Optional, Tuple, Union | |
| import numpy as np | |
| import torch | |
| from ..configuration_utils import ConfigMixin, register_to_config | |
| from .scheduling_utils import SchedulerMixin, SchedulerOutput | |
| class IPNDMScheduler(SchedulerMixin, ConfigMixin): | |
| """ | |
| Improved Pseudo numerical methods for diffusion models (iPNDM) ported from @crowsonkb's amazing k-diffusion | |
| [library](https://github.com/crowsonkb/v-diffusion-pytorch/blob/987f8985e38208345c1959b0ea767a625831cc9b/diffusion/sampling.py#L296) | |
| [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` | |
| function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. | |
| [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and | |
| [`~SchedulerMixin.from_pretrained`] functions. | |
| For more details, see the original paper: https://arxiv.org/abs/2202.09778 | |
| Args: | |
| num_train_timesteps (`int`): number of diffusion steps used to train the model. | |
| """ | |
| order = 1 | |
| def __init__( | |
| self, num_train_timesteps: int = 1000, trained_betas: Optional[Union[np.ndarray, List[float]]] = None | |
| ): | |
| # set `betas`, `alphas`, `timesteps` | |
| self.set_timesteps(num_train_timesteps) | |
| # standard deviation of the initial noise distribution | |
| self.init_noise_sigma = 1.0 | |
| # For now we only support F-PNDM, i.e. the runge-kutta method | |
| # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf | |
| # mainly at formula (9), (12), (13) and the Algorithm 2. | |
| self.pndm_order = 4 | |
| # running values | |
| self.ets = [] | |
| def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): | |
| """ | |
| Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference. | |
| Args: | |
| num_inference_steps (`int`): | |
| the number of diffusion steps used when generating samples with a pre-trained model. | |
| """ | |
| self.num_inference_steps = num_inference_steps | |
| steps = torch.linspace(1, 0, num_inference_steps + 1)[:-1] | |
| steps = torch.cat([steps, torch.tensor([0.0])]) | |
| if self.config.trained_betas is not None: | |
| self.betas = torch.tensor(self.config.trained_betas, dtype=torch.float32) | |
| else: | |
| self.betas = torch.sin(steps * math.pi / 2) ** 2 | |
| self.alphas = (1.0 - self.betas**2) ** 0.5 | |
| timesteps = (torch.atan2(self.betas, self.alphas) / math.pi * 2)[:-1] | |
| self.timesteps = timesteps.to(device) | |
| self.ets = [] | |
| def step( | |
| self, | |
| model_output: torch.FloatTensor, | |
| timestep: int, | |
| sample: torch.FloatTensor, | |
| return_dict: bool = True, | |
| ) -> Union[SchedulerOutput, Tuple]: | |
| """ | |
| Step function propagating the sample with the linear multi-step method. This has one forward pass with multiple | |
| times to approximate the solution. | |
| Args: | |
| model_output (`torch.FloatTensor`): direct output from learned diffusion model. | |
| timestep (`int`): current discrete timestep in the diffusion chain. | |
| sample (`torch.FloatTensor`): | |
| current instance of sample being created by diffusion process. | |
| return_dict (`bool`): option for returning tuple rather than SchedulerOutput class | |
| Returns: | |
| [`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is | |
| True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. | |
| """ | |
| if self.num_inference_steps is None: | |
| raise ValueError( | |
| "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" | |
| ) | |
| timestep_index = (self.timesteps == timestep).nonzero().item() | |
| prev_timestep_index = timestep_index + 1 | |
| ets = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] | |
| self.ets.append(ets) | |
| if len(self.ets) == 1: | |
| ets = self.ets[-1] | |
| elif len(self.ets) == 2: | |
| ets = (3 * self.ets[-1] - self.ets[-2]) / 2 | |
| elif len(self.ets) == 3: | |
| ets = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 | |
| else: | |
| ets = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) | |
| prev_sample = self._get_prev_sample(sample, timestep_index, prev_timestep_index, ets) | |
| if not return_dict: | |
| return (prev_sample,) | |
| return SchedulerOutput(prev_sample=prev_sample) | |
| def scale_model_input(self, sample: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor: | |
| """ | |
| Ensures interchangeability with schedulers that need to scale the denoising model input depending on the | |
| current timestep. | |
| Args: | |
| sample (`torch.FloatTensor`): input sample | |
| Returns: | |
| `torch.FloatTensor`: scaled input sample | |
| """ | |
| return sample | |
| def _get_prev_sample(self, sample, timestep_index, prev_timestep_index, ets): | |
| alpha = self.alphas[timestep_index] | |
| sigma = self.betas[timestep_index] | |
| next_alpha = self.alphas[prev_timestep_index] | |
| next_sigma = self.betas[prev_timestep_index] | |
| pred = (sample - sigma * ets) / max(alpha, 1e-8) | |
| prev_sample = next_alpha * pred + ets * next_sigma | |
| return prev_sample | |
| def __len__(self): | |
| return self.config.num_train_timesteps | |