Spaces:
Runtime error
Runtime error
| # Copyright 2023 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion | |
| # and https://github.com/hojonathanho/diffusion | |
| import math | |
| from dataclasses import dataclass | |
| from typing import List, Optional, Tuple, Union | |
| import numpy as np | |
| import torch | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.schedulers.scheduling_utils import SchedulerMixin | |
| from diffusers.utils import BaseOutput, deprecate | |
| # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM | |
| class DDIMSchedulerOutput(BaseOutput): | |
| """ | |
| Output class for the scheduler's step function output. | |
| Args: | |
| prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): | |
| Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the | |
| denoising loop. | |
| pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): | |
| The predicted denoised sample (x_{0}) based on the model output from the current timestep. | |
| `pred_original_sample` can be used to preview progress or for guidance. | |
| """ | |
| prev_sample: torch.FloatTensor | |
| pred_original_sample: Optional[torch.FloatTensor] = None | |
| # Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar | |
| def betas_for_alpha_bar( | |
| num_diffusion_timesteps, | |
| max_beta=0.999, | |
| alpha_transform_type="cosine", | |
| ): | |
| """ | |
| Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of | |
| (1-beta) over time from t = [0,1]. | |
| Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up | |
| to that part of the diffusion process. | |
| Args: | |
| num_diffusion_timesteps (`int`): the number of betas to produce. | |
| max_beta (`float`): the maximum beta to use; use values lower than 1 to | |
| prevent singularities. | |
| alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar. | |
| Choose from `cosine` or `exp` | |
| Returns: | |
| betas (`np.ndarray`): the betas used by the scheduler to step the model outputs | |
| """ | |
| if alpha_transform_type == "cosine": | |
| def alpha_bar_fn(t): | |
| return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 | |
| elif alpha_transform_type == "exp": | |
| def alpha_bar_fn(t): | |
| return math.exp(t * -12.0) | |
| else: | |
| raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}") | |
| betas = [] | |
| for i in range(num_diffusion_timesteps): | |
| t1 = i / num_diffusion_timesteps | |
| t2 = (i + 1) / num_diffusion_timesteps | |
| betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) | |
| return torch.tensor(betas, dtype=torch.float32) | |
| class DDIMInverseScheduler(SchedulerMixin, ConfigMixin): | |
| """ | |
| DDIMInverseScheduler is the reverse scheduler of [`DDIMScheduler`]. | |
| [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` | |
| function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. | |
| [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and | |
| [`~SchedulerMixin.from_pretrained`] functions. | |
| For more details, see the original paper: https://arxiv.org/abs/2010.02502 | |
| Args: | |
| num_train_timesteps (`int`): number of diffusion steps used to train the model. | |
| beta_start (`float`): the starting `beta` value of inference. | |
| beta_end (`float`): the final `beta` value. | |
| beta_schedule (`str`): | |
| the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from | |
| `linear`, `scaled_linear`, or `squaredcos_cap_v2`. | |
| trained_betas (`np.ndarray`, optional): | |
| option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. | |
| clip_sample (`bool`, default `True`): | |
| option to clip predicted sample for numerical stability. | |
| clip_sample_range (`float`, default `1.0`): | |
| the maximum magnitude for sample clipping. Valid only when `clip_sample=True`. | |
| set_alpha_to_zero (`bool`, default `True`): | |
| each diffusion step uses the value of alphas product at that step and at the previous one. For the final | |
| step there is no previous alpha. When this option is `True` the previous alpha product is fixed to `0`, | |
| otherwise it uses the value of alpha at step `num_train_timesteps - 1`. | |
| steps_offset (`int`, default `0`): | |
| an offset added to the inference steps. You can use a combination of `offset=1` and | |
| `set_alpha_to_zero=False`, to make the last step use step `num_train_timesteps - 1` for the previous alpha | |
| product. | |
| prediction_type (`str`, default `epsilon`, optional): | |
| prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion | |
| process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4 | |
| https://imagen.research.google/video/paper.pdf) | |
| """ | |
| order = 1 | |
| def __init__( | |
| self, | |
| num_train_timesteps: int = 1000, | |
| beta_start: float = 0.0001, | |
| beta_end: float = 0.02, | |
| beta_schedule: str = "linear", | |
| trained_betas: Optional[Union[np.ndarray, List[float]]] = None, | |
| clip_sample: bool = True, | |
| set_alpha_to_zero: bool = True, | |
| steps_offset: int = 0, | |
| prediction_type: str = "epsilon", | |
| clip_sample_range: float = 1.0, | |
| **kwargs, | |
| ): | |
| if kwargs.get("set_alpha_to_one", None) is not None: | |
| deprecation_message = ( | |
| "The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead." | |
| ) | |
| deprecate("set_alpha_to_one", "1.0.0", deprecation_message, standard_warn=False) | |
| set_alpha_to_zero = kwargs["set_alpha_to_one"] | |
| if trained_betas is not None: | |
| self.betas = torch.tensor(trained_betas, dtype=torch.float32) | |
| elif beta_schedule == "linear": | |
| self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) | |
| elif beta_schedule == "scaled_linear": | |
| # this schedule is very specific to the latent diffusion model. | |
| self.betas = ( | |
| torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 | |
| ) | |
| elif beta_schedule == "squaredcos_cap_v2": | |
| # Glide cosine schedule | |
| self.betas = betas_for_alpha_bar(num_train_timesteps) | |
| else: | |
| raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") | |
| self.alphas = 1.0 - self.betas | |
| self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) | |
| # At every step in inverted ddim, we are looking into the next alphas_cumprod | |
| # For the final step, there is no next alphas_cumprod, and the index is out of bounds | |
| # `set_alpha_to_zero` decides whether we set this parameter simply to zero | |
| # in this case, self.step() just output the predicted noise | |
| # or whether we use the final alpha of the "non-previous" one. | |
| self.final_alpha_cumprod = torch.tensor(0.0) if set_alpha_to_zero else self.alphas_cumprod[-1] | |
| # standard deviation of the initial noise distribution | |
| self.init_noise_sigma = 1.0 | |
| # setable values | |
| self.num_inference_steps = None | |
| self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps).copy().astype(np.int64)) | |
| # Copied from diffusers.schedulers.scheduling_ddim.DDIMScheduler.scale_model_input | |
| def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor: | |
| """ | |
| Ensures interchangeability with schedulers that need to scale the denoising model input depending on the | |
| current timestep. | |
| Args: | |
| sample (`torch.FloatTensor`): input sample | |
| timestep (`int`, optional): current timestep | |
| Returns: | |
| `torch.FloatTensor`: scaled input sample | |
| """ | |
| return sample | |
| def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): | |
| """ | |
| Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference. | |
| Args: | |
| num_inference_steps (`int`): | |
| the number of diffusion steps used when generating samples with a pre-trained model. | |
| """ | |
| if num_inference_steps > self.config.num_train_timesteps: | |
| raise ValueError( | |
| f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:" | |
| f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle" | |
| f" maximal {self.config.num_train_timesteps} timesteps." | |
| ) | |
| self.num_inference_steps = num_inference_steps | |
| step_ratio = self.config.num_train_timesteps // self.num_inference_steps | |
| # creates integer timesteps by multiplying by ratio | |
| # casting to int to avoid issues when num_inference_step is power of 3 | |
| timesteps = (np.arange(0, num_inference_steps) * step_ratio).round().copy().astype(np.int64) | |
| self.timesteps = torch.from_numpy(timesteps).to(device) | |
| self.timesteps += self.config.steps_offset | |
| def step( | |
| self, | |
| model_output: torch.FloatTensor, | |
| timestep: int, | |
| sample: torch.FloatTensor, | |
| eta: float = 0.0, | |
| use_clipped_model_output: bool = False, | |
| variance_noise: Optional[torch.FloatTensor] = None, | |
| return_dict: bool = True, | |
| ) -> Union[DDIMSchedulerOutput, Tuple]: | |
| # 1. get previous step value (=t+1) | |
| prev_timestep = timestep + self.config.num_train_timesteps // self.num_inference_steps | |
| # 2. compute alphas, betas | |
| # change original implementation to exactly match noise levels for analogous forward process | |
| alpha_prod_t = self.alphas_cumprod[timestep] | |
| alpha_prod_t_prev = ( | |
| self.alphas_cumprod[prev_timestep] | |
| if prev_timestep < self.config.num_train_timesteps | |
| else self.final_alpha_cumprod | |
| ) | |
| beta_prod_t = 1 - alpha_prod_t | |
| # 3. compute predicted original sample from predicted noise also called | |
| # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf | |
| if self.config.prediction_type == "epsilon": | |
| pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) | |
| pred_epsilon = model_output | |
| elif self.config.prediction_type == "sample": | |
| pred_original_sample = model_output | |
| pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5) | |
| elif self.config.prediction_type == "v_prediction": | |
| pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output | |
| pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample | |
| else: | |
| raise ValueError( | |
| f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" | |
| " `v_prediction`" | |
| ) | |
| # 4. Clip or threshold "predicted x_0" | |
| if self.config.clip_sample: | |
| pred_original_sample = pred_original_sample.clamp( | |
| -self.config.clip_sample_range, self.config.clip_sample_range | |
| ) | |
| # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf | |
| pred_sample_direction = (1 - alpha_prod_t_prev) ** (0.5) * pred_epsilon | |
| # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf | |
| prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction | |
| if not return_dict: | |
| return (prev_sample, pred_original_sample) | |
| return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample) | |
| def __len__(self): | |
| return self.config.num_train_timesteps | |