Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,529 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pathlib
|
3 |
+
from tokenizers.normalizers import BertNormalizer
|
4 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
5 |
+
from langchain_core.prompts import PromptTemplate
|
6 |
+
from langchain_core.documents import Document
|
7 |
+
import numpy as np
|
8 |
+
import pandas as pd
|
9 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
10 |
+
from transformers import AutoTokenizer, AutoModel
|
11 |
+
import ast
|
12 |
+
import torch
|
13 |
+
from typing import Dict, Any, List
|
14 |
+
from bert_score import score as bert_score
|
15 |
+
from rouge_score import rouge_scorer
|
16 |
+
import warnings
|
17 |
+
import streamlit as st
|
18 |
+
import plotly.graph_objects as go
|
19 |
+
import plotly.express as px
|
20 |
+
|
21 |
+
# Set page config to wide layout at the start
|
22 |
+
st.set_page_config(
|
23 |
+
layout="wide",
|
24 |
+
page_title="Alloy Based Chatbot",
|
25 |
+
page_icon="🔍"
|
26 |
+
)
|
27 |
+
|
28 |
+
warnings.filterwarnings('ignore')
|
29 |
+
|
30 |
+
# Set up Google API key
|
31 |
+
os.environ["GOOGLE_API_KEY"] = st.secrets["google"]["GOOGLE_API_KEY"]
|
32 |
+
|
33 |
+
# Initialize session state
|
34 |
+
if 'page' not in st.session_state:
|
35 |
+
st.session_state.page = 'home'
|
36 |
+
if 'question' not in st.session_state:
|
37 |
+
st.session_state.question = ''
|
38 |
+
if 'results' not in st.session_state:
|
39 |
+
st.session_state.results = None
|
40 |
+
if 'selected_context' not in st.session_state:
|
41 |
+
st.session_state.selected_context = None
|
42 |
+
|
43 |
+
file_path = "vocab_mappings.txt"
|
44 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
45 |
+
mappings = f.read().strip().split('\n')
|
46 |
+
|
47 |
+
mappings = {m[0]: m[2:] for m in mappings}
|
48 |
+
|
49 |
+
norm = BertNormalizer(lowercase=False, strip_accents=True, clean_text=True, handle_chinese_chars=True)
|
50 |
+
|
51 |
+
def normalize(text):
|
52 |
+
text = [norm.normalize_str(s) for s in text.split('\n')]
|
53 |
+
out = []
|
54 |
+
for s in text:
|
55 |
+
norm_s = ''
|
56 |
+
for c in s:
|
57 |
+
norm_s += mappings.get(c, ' ')
|
58 |
+
out.append(norm_s)
|
59 |
+
return '\n'.join(out)
|
60 |
+
|
61 |
+
# Define the prompt template
|
62 |
+
template = """
|
63 |
+
You are an intelligent assistant designed to provide accurate and helpful answers based on the context provided. Follow these guidelines:
|
64 |
+
1. Use only the information from the context to answer the question.
|
65 |
+
2. If the context does not contain enough information to answer the question, say "I don't know" and do not make up an answer.
|
66 |
+
3. Be concise and specific in your response.
|
67 |
+
4. Always end your answer with "Thanks for asking!" to maintain a friendly tone.
|
68 |
+
|
69 |
+
Context: {context}
|
70 |
+
|
71 |
+
Question: {question}
|
72 |
+
|
73 |
+
Answer:
|
74 |
+
"""
|
75 |
+
custom_rag_prompt = PromptTemplate.from_template(template)
|
76 |
+
|
77 |
+
# Initialize model
|
78 |
+
model = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0.5)
|
79 |
+
|
80 |
+
class State:
|
81 |
+
def __init__(self, question: str):
|
82 |
+
self.question = question
|
83 |
+
self.context: List[Document] = []
|
84 |
+
self.answer: str = ""
|
85 |
+
|
86 |
+
def load_embeddings_from_csv(file_path: str):
|
87 |
+
print(f"Loading embeddings from CSV file: {file_path}")
|
88 |
+
df = pd.read_csv(file_path)
|
89 |
+
df['embedding'] = df['embedding'].apply(lambda x: np.array(ast.literal_eval(x)))
|
90 |
+
print("Embeddings loaded successfully.")
|
91 |
+
return df
|
92 |
+
|
93 |
+
def generate_query_embedding(query_text: str, model_name: str):
|
94 |
+
print(f"Generating query embedding using {model_name}...")
|
95 |
+
if model_name == "matscibert":
|
96 |
+
return generate_matscibert_embedding(query_text)
|
97 |
+
elif model_name == "bert":
|
98 |
+
return generate_bert_embedding(query_text)
|
99 |
+
else:
|
100 |
+
raise ValueError(f"Unknown model: {model_name}")
|
101 |
+
|
102 |
+
def generate_matscibert_embedding(query_text: str):
|
103 |
+
print("Generating Matscibert embedding...")
|
104 |
+
tokenizer = AutoTokenizer.from_pretrained('m3rg-iitd/matscibert')
|
105 |
+
model = AutoModel.from_pretrained('m3rg-iitd/matscibert')
|
106 |
+
|
107 |
+
norm_sents = [normalize(query_text)]
|
108 |
+
tokenized_sents = tokenizer(norm_sents, padding=True, truncation=True, return_tensors='pt')
|
109 |
+
|
110 |
+
with torch.no_grad():
|
111 |
+
last_hidden_state = model(**tokenized_sents).last_hidden_state
|
112 |
+
|
113 |
+
sentence_embedding = last_hidden_state.mean(dim=1).squeeze().numpy()
|
114 |
+
print("Matscibert embedding generated.")
|
115 |
+
return sentence_embedding
|
116 |
+
|
117 |
+
def generate_bert_embedding(query_text: str):
|
118 |
+
print("Generating BERT embedding...")
|
119 |
+
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
|
120 |
+
model = AutoModel.from_pretrained("bert-base-uncased")
|
121 |
+
|
122 |
+
encoded_input = tokenizer(query_text, return_tensors='pt', truncation=True, padding=True)
|
123 |
+
with torch.no_grad():
|
124 |
+
output = model(**encoded_input)
|
125 |
+
|
126 |
+
sentence_embedding = output.last_hidden_state.mean(dim=1).squeeze().numpy()
|
127 |
+
print("BERT embedding generated.")
|
128 |
+
return sentence_embedding
|
129 |
+
|
130 |
+
def retrieve(state: State, embeddings_df: pd.DataFrame, model_name: str):
|
131 |
+
print("Retrieving relevant documents...")
|
132 |
+
query_embedding = generate_query_embedding(state.question, model_name)
|
133 |
+
document_embeddings = np.array(embeddings_df['embedding'].tolist())
|
134 |
+
similarities = cosine_similarity([query_embedding], document_embeddings)
|
135 |
+
top_indices = similarities.argsort()[0][::-1]
|
136 |
+
state.context = [Document(page_content=embeddings_df.iloc[i]['document']) for i in top_indices[:3]]
|
137 |
+
print("Documents retrieved.")
|
138 |
+
return state
|
139 |
+
|
140 |
+
def generate(state: State):
|
141 |
+
print("Generating answer based on context and question...")
|
142 |
+
docs_content = "\n\n".join(doc.page_content for doc in state.context)
|
143 |
+
messages = custom_rag_prompt.invoke({"question": state.question, "context": docs_content})
|
144 |
+
response = model.invoke(messages)
|
145 |
+
state.answer = response.content
|
146 |
+
print("Answer generated.")
|
147 |
+
return state
|
148 |
+
|
149 |
+
def workflow(state_input: Dict[str, Any], embeddings_df: pd.DataFrame, model_name: str) -> Dict[str, Any]:
|
150 |
+
print(f"Running workflow for question: {state_input['question']} with model: {model_name}")
|
151 |
+
state = State(state_input["question"])
|
152 |
+
state = retrieve(state, embeddings_df, model_name)
|
153 |
+
state = generate(state)
|
154 |
+
print(f"Workflow complete for question: {state_input['question']}.")
|
155 |
+
return {"context": state.context, "answer": state.answer}
|
156 |
+
|
157 |
+
def compute_bertscore(answer: str, context: str) -> Dict[str, float]:
|
158 |
+
P, R, F1 = bert_score([answer], [context], lang="en")
|
159 |
+
return {
|
160 |
+
"BERTScore Precision": P.mean().item(),
|
161 |
+
"BERTScore Recall": R.mean().item(),
|
162 |
+
"BERTScore F1": F1.mean().item()
|
163 |
+
}
|
164 |
+
|
165 |
+
def compute_rouge(answer: str, context: str) -> Dict[str, float]:
|
166 |
+
scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'])
|
167 |
+
scores = scorer.score(context, answer)
|
168 |
+
return {
|
169 |
+
"ROUGE-1": scores["rouge1"].fmeasure,
|
170 |
+
"ROUGE-2": scores["rouge2"].fmeasure,
|
171 |
+
"ROUGE-L": scores["rougeL"].fmeasure
|
172 |
+
}
|
173 |
+
|
174 |
+
def evaluate_answer(answer: str, context: str) -> Dict[str, Dict[str, float]]:
|
175 |
+
return {
|
176 |
+
"BERTScore": compute_bertscore(answer, context),
|
177 |
+
"ROUGE": compute_rouge(answer, context)
|
178 |
+
}
|
179 |
+
|
180 |
+
@st.cache_resource
|
181 |
+
def load_data():
|
182 |
+
matscibert_csv = 'matscibert_embeddings.csv'
|
183 |
+
bert_csv = 'bert_embeddings.csv'
|
184 |
+
embeddings_df_matscibert = load_embeddings_from_csv(matscibert_csv)
|
185 |
+
embeddings_df_bert = load_embeddings_from_csv(bert_csv)
|
186 |
+
return embeddings_df_matscibert, embeddings_df_bert
|
187 |
+
|
188 |
+
embeddings_df_matscibert, embeddings_df_bert = load_data()
|
189 |
+
|
190 |
+
def ask_question(question: str):
|
191 |
+
print(f"Asking question: {question}")
|
192 |
+
matscibert_result = workflow({"question": question}, embeddings_df_matscibert, model_name="matscibert")
|
193 |
+
bert_result = workflow({"question": question}, embeddings_df_bert, model_name="bert")
|
194 |
+
|
195 |
+
matscibert_context = "\n\n".join(doc.page_content for doc in matscibert_result["context"])
|
196 |
+
matscibert_answer = matscibert_result["answer"]
|
197 |
+
matscibert_scores = evaluate_answer(matscibert_answer, matscibert_context)
|
198 |
+
|
199 |
+
bert_context = "\n\n".join(doc.page_content for doc in bert_result["context"])
|
200 |
+
bert_answer = bert_result["answer"]
|
201 |
+
bert_scores = evaluate_answer(bert_answer, bert_context)
|
202 |
+
|
203 |
+
return {
|
204 |
+
"matscibert": {
|
205 |
+
"Context": matscibert_context,
|
206 |
+
"Answer": matscibert_answer,
|
207 |
+
"Scores": matscibert_scores
|
208 |
+
},
|
209 |
+
"bert": {
|
210 |
+
"Context": bert_context,
|
211 |
+
"Answer": bert_answer,
|
212 |
+
"Scores": bert_scores
|
213 |
+
}
|
214 |
+
}
|
215 |
+
|
216 |
+
def create_bertscore_chart(scores: Dict[str, float]):
|
217 |
+
metrics = ['Precision', 'Recall', 'F1']
|
218 |
+
values = [scores['BERTScore Precision'], scores['BERTScore Recall'], scores['BERTScore F1']]
|
219 |
+
|
220 |
+
fig = go.Figure(data=[
|
221 |
+
go.Bar(
|
222 |
+
x=metrics,
|
223 |
+
y=values,
|
224 |
+
marker_color=['#4285F4', '#34A853', '#FBBC05'],
|
225 |
+
text=[f"{v:.4f}" for v in values],
|
226 |
+
textposition='auto'
|
227 |
+
)
|
228 |
+
])
|
229 |
+
|
230 |
+
fig.update_layout(
|
231 |
+
title='BERTScore Metrics',
|
232 |
+
yaxis=dict(range=[0, 1]),
|
233 |
+
height=400
|
234 |
+
)
|
235 |
+
|
236 |
+
return fig
|
237 |
+
|
238 |
+
def create_rouge_chart(scores: Dict[str, float]):
|
239 |
+
metrics = ['ROUGE-1', 'ROUGE-2', 'ROUGE-L']
|
240 |
+
values = [scores['ROUGE-1'], scores['ROUGE-2'], scores['ROUGE-L']]
|
241 |
+
|
242 |
+
fig = go.Figure(data=[
|
243 |
+
go.Bar(
|
244 |
+
x=metrics,
|
245 |
+
y=values,
|
246 |
+
marker_color=['#EA4335', '#34A853', '#FBBC05'],
|
247 |
+
text=[f"{v:.4f}" for v in values],
|
248 |
+
textposition='auto'
|
249 |
+
)
|
250 |
+
])
|
251 |
+
|
252 |
+
fig.update_layout(
|
253 |
+
title='ROUGE Metrics',
|
254 |
+
yaxis=dict(range=[0, 1]),
|
255 |
+
height=400
|
256 |
+
)
|
257 |
+
|
258 |
+
return fig
|
259 |
+
|
260 |
+
def create_comparison_chart(matscibert_scores: Dict[str, Dict[str, float]], bert_scores: Dict[str, Dict[str, float]]):
|
261 |
+
metrics = ['Precision', 'Recall', 'F1', 'ROUGE-1', 'ROUGE-2', 'ROUGE-L']
|
262 |
+
matscibert_values = [
|
263 |
+
matscibert_scores['BERTScore']['BERTScore Precision'],
|
264 |
+
matscibert_scores['BERTScore']['BERTScore Recall'],
|
265 |
+
matscibert_scores['BERTScore']['BERTScore F1'],
|
266 |
+
matscibert_scores['ROUGE']['ROUGE-1'],
|
267 |
+
matscibert_scores['ROUGE']['ROUGE-2'],
|
268 |
+
matscibert_scores['ROUGE']['ROUGE-L']
|
269 |
+
]
|
270 |
+
|
271 |
+
bert_values = [
|
272 |
+
bert_scores['BERTScore']['BERTScore Precision'],
|
273 |
+
bert_scores['BERTScore']['BERTScore Recall'],
|
274 |
+
bert_scores['BERTScore']['BERTScore F1'],
|
275 |
+
bert_scores['ROUGE']['ROUGE-1'],
|
276 |
+
bert_scores['ROUGE']['ROUGE-2'],
|
277 |
+
bert_scores['ROUGE']['ROUGE-L']
|
278 |
+
]
|
279 |
+
|
280 |
+
fig = go.Figure()
|
281 |
+
|
282 |
+
fig.add_trace(go.Bar(
|
283 |
+
x=metrics,
|
284 |
+
y=matscibert_values,
|
285 |
+
name='Matscibert',
|
286 |
+
marker_color='#4285F4'
|
287 |
+
))
|
288 |
+
|
289 |
+
fig.add_trace(go.Bar(
|
290 |
+
x=metrics,
|
291 |
+
y=bert_values,
|
292 |
+
name='BERT',
|
293 |
+
marker_color='#EA4335'
|
294 |
+
))
|
295 |
+
|
296 |
+
fig.update_layout(
|
297 |
+
title='Model Comparison',
|
298 |
+
barmode='group',
|
299 |
+
height=500
|
300 |
+
)
|
301 |
+
|
302 |
+
return fig
|
303 |
+
|
304 |
+
def home_page():
|
305 |
+
# CSS to center content vertically from middle to bottom
|
306 |
+
st.markdown("""
|
307 |
+
<style>
|
308 |
+
.main .block-container {
|
309 |
+
padding-top: 0;
|
310 |
+
display: flex;
|
311 |
+
flex-direction: column;
|
312 |
+
justify-content: center;
|
313 |
+
min-height: 70vh;
|
314 |
+
}
|
315 |
+
@media (max-height: 700px) {
|
316 |
+
.main .block-container {
|
317 |
+
min-height: 80vh;
|
318 |
+
}
|
319 |
+
}
|
320 |
+
</style>
|
321 |
+
""", unsafe_allow_html=True)
|
322 |
+
|
323 |
+
# Centered heading
|
324 |
+
st.markdown("""
|
325 |
+
<div style='text-align: center; margin-bottom: 1rem;'>
|
326 |
+
<h1>Welcome to the Alloy Based Chatbot</h1>
|
327 |
+
</div>
|
328 |
+
""", unsafe_allow_html=True)
|
329 |
+
|
330 |
+
# Search components - centered in the middle of available space
|
331 |
+
col1, col2, col3 = st.columns([1, 2, 1])
|
332 |
+
with col2:
|
333 |
+
user_input = st.text_area(
|
334 |
+
"Enter your question about alloys:",
|
335 |
+
key="user_input",
|
336 |
+
value=st.session_state.question,
|
337 |
+
height=100,
|
338 |
+
label_visibility="collapsed",
|
339 |
+
placeholder="Ask your question here"
|
340 |
+
)
|
341 |
+
|
342 |
+
submit_button = st.button(
|
343 |
+
"Search",
|
344 |
+
key="search_button",
|
345 |
+
use_container_width=True
|
346 |
+
)
|
347 |
+
|
348 |
+
if submit_button and user_input:
|
349 |
+
st.session_state.question = user_input
|
350 |
+
st.session_state.results = ask_question(user_input)
|
351 |
+
st.session_state.page = 'results'
|
352 |
+
st.rerun()
|
353 |
+
|
354 |
+
def results_page():
|
355 |
+
st.title("Search Results")
|
356 |
+
|
357 |
+
if st.session_state.results:
|
358 |
+
results = st.session_state.results
|
359 |
+
|
360 |
+
# First show answers in columns
|
361 |
+
st.subheader("Model Answers")
|
362 |
+
col1, col2 = st.columns(2)
|
363 |
+
|
364 |
+
with col1:
|
365 |
+
with st.container(border=True):
|
366 |
+
st.markdown("### Matscibert Answer")
|
367 |
+
st.write(results["matscibert"]["Answer"])
|
368 |
+
|
369 |
+
with col2:
|
370 |
+
with st.container(border=True):
|
371 |
+
st.markdown("### BERT Answer")
|
372 |
+
st.write(results["bert"]["Answer"])
|
373 |
+
|
374 |
+
# Then show the comparison chart
|
375 |
+
st.subheader("Model Performance Comparison")
|
376 |
+
st.plotly_chart(
|
377 |
+
create_comparison_chart(results["matscibert"]["Scores"], results["bert"]["Scores"]),
|
378 |
+
use_container_width=True
|
379 |
+
)
|
380 |
+
|
381 |
+
# Detailed metrics in tabs
|
382 |
+
st.subheader("Detailed Metrics")
|
383 |
+
tab1, tab2 = st.tabs(["Matscibert Metrics", "BERT Metrics"])
|
384 |
+
|
385 |
+
with tab1:
|
386 |
+
col1, col2 = st.columns(2)
|
387 |
+
with col1:
|
388 |
+
st.plotly_chart(
|
389 |
+
create_bertscore_chart(results["matscibert"]["Scores"]["BERTScore"]),
|
390 |
+
use_container_width=True
|
391 |
+
)
|
392 |
+
with col2:
|
393 |
+
st.plotly_chart(
|
394 |
+
create_rouge_chart(results["matscibert"]["Scores"]["ROUGE"]),
|
395 |
+
use_container_width=True
|
396 |
+
)
|
397 |
+
|
398 |
+
with tab2:
|
399 |
+
col1, col2 = st.columns(2)
|
400 |
+
with col1:
|
401 |
+
st.plotly_chart(
|
402 |
+
create_bertscore_chart(results["bert"]["Scores"]["BERTScore"]),
|
403 |
+
use_container_width=True
|
404 |
+
)
|
405 |
+
with col2:
|
406 |
+
st.plotly_chart(
|
407 |
+
create_rouge_chart(results["bert"]["Scores"]["ROUGE"]),
|
408 |
+
use_container_width=True
|
409 |
+
)
|
410 |
+
|
411 |
+
# Navigation buttons at the bottom
|
412 |
+
st.markdown("---")
|
413 |
+
col1, col2 = st.columns([1, 1])
|
414 |
+
with col1:
|
415 |
+
if st.button("Start New Search", use_container_width=True):
|
416 |
+
st.session_state.page = 'home'
|
417 |
+
st.session_state.question = ''
|
418 |
+
st.rerun()
|
419 |
+
with col2:
|
420 |
+
if st.button("View Context", use_container_width=True):
|
421 |
+
st.session_state.page = 'context_choice'
|
422 |
+
st.rerun()
|
423 |
+
|
424 |
+
def context_choice_page():
|
425 |
+
st.title("Select Context to View")
|
426 |
+
|
427 |
+
st.write("Choose which model's context you'd like to examine:")
|
428 |
+
|
429 |
+
col1, col2 = st.columns(2)
|
430 |
+
with col1:
|
431 |
+
if st.button("View Matscibert Context", use_container_width=True):
|
432 |
+
st.session_state.selected_context = "matscibert"
|
433 |
+
st.session_state.page = 'context_view'
|
434 |
+
st.rerun()
|
435 |
+
with col2:
|
436 |
+
if st.button("View BERT Context", use_container_width=True):
|
437 |
+
st.session_state.selected_context = "bert"
|
438 |
+
st.session_state.page = 'context_view'
|
439 |
+
st.rerun()
|
440 |
+
|
441 |
+
st.markdown("---")
|
442 |
+
if st.button("Back to Results", use_container_width=True):
|
443 |
+
st.session_state.page = 'results'
|
444 |
+
st.rerun()
|
445 |
+
|
446 |
+
def context_view_page():
|
447 |
+
st.title(f"{st.session_state.selected_context.capitalize()} Context")
|
448 |
+
|
449 |
+
# Context switching buttons at top
|
450 |
+
col1, col2 = st.columns(2)
|
451 |
+
with col1:
|
452 |
+
if st.button("Switch to Matscibert Context",
|
453 |
+
disabled=st.session_state.selected_context == "matscibert",
|
454 |
+
use_container_width=True):
|
455 |
+
st.session_state.selected_context = "matscibert"
|
456 |
+
st.rerun()
|
457 |
+
with col2:
|
458 |
+
if st.button("Switch to BERT Context",
|
459 |
+
disabled=st.session_state.selected_context == "bert",
|
460 |
+
use_container_width=True):
|
461 |
+
st.session_state.selected_context = "bert"
|
462 |
+
st.rerun()
|
463 |
+
|
464 |
+
# Display the context in a scrollable container
|
465 |
+
if st.session_state.results and st.session_state.selected_context:
|
466 |
+
context = st.session_state.results[st.session_state.selected_context]["Context"]
|
467 |
+
with st.container(height=600, border=True):
|
468 |
+
st.markdown(f"```\n{context}\n```")
|
469 |
+
|
470 |
+
# Navigation buttons at bottom
|
471 |
+
st.markdown("---")
|
472 |
+
col1, col2 = st.columns([1, 1])
|
473 |
+
with col1:
|
474 |
+
if st.button("Back to Results", use_container_width=True):
|
475 |
+
st.session_state.page = 'results'
|
476 |
+
st.rerun()
|
477 |
+
with col2:
|
478 |
+
if st.button("New Search", use_container_width=True):
|
479 |
+
st.session_state.page = 'home'
|
480 |
+
st.session_state.question = ''
|
481 |
+
st.rerun()
|
482 |
+
|
483 |
+
def main():
|
484 |
+
# Add some custom CSS
|
485 |
+
st.markdown("""
|
486 |
+
<style>
|
487 |
+
/* Search bar styling */
|
488 |
+
.stTextArea textarea {
|
489 |
+
min-height: 100px;
|
490 |
+
border: none !important;
|
491 |
+
box-shadow: none !important;
|
492 |
+
padding: 12px !important;
|
493 |
+
}
|
494 |
+
.stTextArea div[data-baseweb="base-input"] {
|
495 |
+
border-radius: 8px !important;
|
496 |
+
border: none !important;
|
497 |
+
box-shadow: none !important;
|
498 |
+
background-color: transparent !important;
|
499 |
+
}
|
500 |
+
|
501 |
+
/* Button styling */
|
502 |
+
.stButton button {
|
503 |
+
width: 100%;
|
504 |
+
margin-top: 0.5rem;
|
505 |
+
}
|
506 |
+
|
507 |
+
/* Layout adjustments */
|
508 |
+
div[data-testid="stHorizontalBlock"] {
|
509 |
+
gap: 0.5rem;
|
510 |
+
}
|
511 |
+
|
512 |
+
/* Remove extra padding */
|
513 |
+
.main .block-container {
|
514 |
+
padding-top: 0;
|
515 |
+
}
|
516 |
+
</style>
|
517 |
+
""", unsafe_allow_html=True)
|
518 |
+
|
519 |
+
if st.session_state.page == 'home':
|
520 |
+
home_page()
|
521 |
+
elif st.session_state.page == 'results':
|
522 |
+
results_page()
|
523 |
+
elif st.session_state.page == 'context_choice':
|
524 |
+
context_choice_page()
|
525 |
+
elif st.session_state.page == 'context_view':
|
526 |
+
context_view_page()
|
527 |
+
|
528 |
+
if __name__ == "__main__":
|
529 |
+
main()
|