import os import sys import gradio as gr import json import base64 import logging from pathlib import Path import uuid import re from datetime import datetime from typing import Dict, List, Optional, Tuple import pandas as pd # Set up logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Fix the model path for HF Space deployment if os.path.exists('final_optimized_model'): # Running in HF Space MODEL_PATH = 'final_optimized_model' else: # Running locally MODEL_PATH = os.path.join(Path(__file__).parent.parent, 'final_optimized_model') # Import the ML components sys.path.insert(0, str(Path(__file__).parent)) if os.path.exists('ml_suite'): # Override the config to use local model path import ml_suite.config as config config.FINE_TUNED_MODEL_DIR = MODEL_PATH from ml_suite.predictor import initialize_predictor, get_ai_prediction_for_email, is_predictor_ready, get_model_status # Initialize the predictor once when the app starts logger.info(f"Initializing AI model from {MODEL_PATH}...") if 'ml_suite' in sys.modules: initialize_predictor(logger) model_ready = is_predictor_ready() logger.info(f"Model initialization status: {'Ready' if model_ready else 'Failed'}") else: model_ready = False logger.error("ML suite not found") # Store session data session_data = {} def create_session(): """Create a new session""" session_id = str(uuid.uuid4()) session_data[session_id] = { 'emails': [], 'scan_history': [], 'settings': { 'ai_enabled': True, 'confidence_threshold': 0.5 } } return session_id def parse_email_batch(email_text): """Parse batch email input""" emails = [] current_email = {'subject': '', 'body': '', 'sender': ''} lines = email_text.strip().split('\n') current_section = None for line in lines: line = line.strip() if line.lower().startswith('---'): # Email separator if current_email['subject'] or current_email['body']: emails.append(current_email) current_email = {'subject': '', 'body': '', 'sender': ''} current_section = None elif line.lower().startswith('from:'): current_email['sender'] = line[5:].strip() current_section = 'sender' elif line.lower().startswith('subject:'): current_email['subject'] = line[8:].strip() current_section = 'subject' elif line.lower().startswith('body:'): current_section = 'body' elif line and current_section == 'body': current_email['body'] += line + '\n' elif line and current_section == 'subject' and not line.lower().startswith(('from:', 'body:')): current_email['subject'] += ' ' + line # Add last email if current_email['subject'] or current_email['body']: emails.append(current_email) return emails def classify_email(email_data): """Classify a single email""" if not model_ready: return { 'prediction': 'error', 'confidence': 0, 'error': 'Model not ready' } try: # Prepare email data for predictor email_for_prediction = { 'snippet': email_data.get('body', '')[:200], 'subject': email_data.get('subject', ''), 'body': email_data.get('body', ''), 'sender': email_data.get('sender', 'unknown@example.com'), 'id': str(uuid.uuid4()) } result = get_ai_prediction_for_email(email_for_prediction) return result except Exception as e: logger.error(f"Classification error: {str(e)}") return { 'prediction': 'error', 'confidence': 0, 'error': str(e) } def scan_emails(session_id, email_batch_text, ai_enabled, confidence_threshold): """Scan a batch of emails""" if session_id not in session_data: session_id = create_session() session = session_data[session_id] session['settings']['ai_enabled'] = ai_enabled session['settings']['confidence_threshold'] = confidence_threshold # Parse emails emails = parse_email_batch(email_batch_text) if not emails: return "No valid emails found in input.", None, session_id results = [] unsubscribe_count = 0 important_count = 0 for email in emails: if ai_enabled and model_ready: classification = classify_email(email) prediction = classification.get('prediction', 'unknown') confidence = classification.get('confidence', 0) if confidence >= confidence_threshold: if prediction == 'unsubscribe': unsubscribe_count += 1 status = "✅ Unsubscribe" else: important_count += 1 status = "⚠️ Important" else: status = "❓ Uncertain" else: prediction = 'not_analyzed' confidence = 0 status = "⏭️ Skipped (AI disabled)" result = { 'subject': email.get('subject', 'No subject'), 'sender': email.get('sender', 'Unknown'), 'prediction': prediction, 'confidence': confidence, 'status': status, 'body_preview': email.get('body', '')[:100] + '...' if len(email.get('body', '')) > 100 else email.get('body', '') } results.append(result) session['emails'].append(result) # Create summary summary = f""" ## Scan Results **Total Emails Scanned:** {len(results)} **Unsubscribe Confirmations:** {unsubscribe_count} **Important Emails:** {important_count} **Uncertain:** {len(results) - unsubscribe_count - important_count} ### Detailed Results: """ for i, result in enumerate(results, 1): summary += f"\n**{i}. {result['subject']}**\n" summary += f"- From: {result['sender']}\n" summary += f"- Status: {result['status']}\n" if ai_enabled and result['confidence'] > 0: summary += f"- Confidence: {result['confidence']:.2%}\n" summary += f"- Preview: {result['body_preview']}\n" # Create DataFrame for display df_data = [] for r in results: df_data.append({ 'Subject': r['subject'], 'From': r['sender'], 'Status': r['status'], 'Confidence': f"{r['confidence']:.2%}" if r['confidence'] > 0 else "N/A", 'Preview': r['body_preview'][:50] + '...' }) df = pd.DataFrame(df_data) if df_data else None # Add to scan history session['scan_history'].append({ 'timestamp': datetime.now().isoformat(), 'count': len(results), 'unsubscribe': unsubscribe_count, 'important': important_count }) return summary, df, session_id def get_statistics(session_id): """Get session statistics""" if session_id not in session_data: return "No session data available." session = session_data[session_id] total_scans = len(session['scan_history']) total_emails = sum(scan['count'] for scan in session['scan_history']) total_unsubscribe = sum(scan['unsubscribe'] for scan in session['scan_history']) total_important = sum(scan['important'] for scan in session['scan_history']) stats = f""" ## Session Statistics **Total Scans:** {total_scans} **Total Emails Processed:** {total_emails} **Unsubscribe Emails Found:** {total_unsubscribe} **Important Emails Protected:** {total_important} ### Model Information: - **Model:** DeBERTa-v3-small - **Training Samples:** 20,000 - **Accuracy:** 100% on test set - **Status:** {'🟢 Ready' if model_ready else '🔴 Not Available'} """ return stats # Create Gradio interface with gr.Blocks(title="Gmail Unsubscriber - Full Web Version", theme=gr.themes.Soft()) as demo: session_state = gr.State(create_session()) gr.Markdown(""" # 📧 Gmail Unsubscriber - Web Version This is a web-based version of the Gmail Unsubscriber application that uses AI to classify emails as unsubscribe confirmations or important emails. **Note:** This web version demonstrates the AI classification capabilities. For full Gmail integration with OAuth, please use the desktop version. """) with gr.Tabs(): with gr.TabItem("📊 Email Scanner"): gr.Markdown("### Batch Email Classification") with gr.Row(): with gr.Column(scale=2): email_input = gr.Textbox( lines=15, placeholder="""Paste multiple emails here. Format each email as: From: sender@example.com Subject: Your subscription has been cancelled Body: We're sorry to see you go! Your subscription has been cancelled. --- From: bank@example.com Subject: Important: Security Alert Body: We detected unusual activity on your account. Please review immediately. --- (Continue with more emails...)""", label="Email Batch Input" ) with gr.Column(scale=1): ai_enabled = gr.Checkbox(value=True, label="Enable AI Classification") confidence_threshold = gr.Slider( minimum=0.1, maximum=0.9, value=0.5, step=0.1, label="Confidence Threshold" ) scan_btn = gr.Button("🔍 Scan Emails", variant="primary", size="lg") scan_output = gr.Markdown() results_table = gr.DataFrame(label="Scan Results") with gr.TabItem("📈 Statistics"): stats_output = gr.Markdown() refresh_stats_btn = gr.Button("🔄 Refresh Statistics") with gr.TabItem("🧪 Test Single Email"): gr.Markdown("### Test AI Classification on a Single Email") with gr.Row(): with gr.Column(): test_subject = gr.Textbox(label="Subject", placeholder="Your subscription has been cancelled") test_sender = gr.Textbox(label="From", placeholder="noreply@example.com") test_body = gr.Textbox( lines=5, label="Body", placeholder="We're sorry to see you go! Your subscription has been successfully cancelled." ) test_btn = gr.Button("🤖 Classify", variant="primary") with gr.Column(): test_output = gr.Markdown() with gr.TabItem("ℹ️ About"): gr.Markdown(""" ## About Gmail Unsubscriber This application uses a fine-tuned DeBERTa-v3-small model to classify emails automatically. ### Features: - 🤖 AI-powered email classification - 📊 Batch processing capabilities - 📈 Real-time statistics - 🎯 Adjustable confidence thresholds ### Model Performance: - **Accuracy:** 100% on test set - **F1 Score:** 1.0 for both classes - **Model Size:** 552MB - **Training Data:** 20,000 email samples ### Desktop Version Features (Not available in web): - Gmail OAuth integration - Automatic email fetching - One-click unsubscribe - Email archiving - Persistent user settings """) # Event handlers def test_single_email(subject, sender, body): if not subject and not body: return "Please enter email content to test." email_data = { 'subject': subject, 'sender': sender, 'body': body } result = classify_email(email_data) if result.get('error'): return f"❌ Error: {result['error']}" prediction = result.get('prediction', 'unknown') confidence = result.get('confidence', 0) if prediction == 'unsubscribe': emoji = "✅" description = "This appears to be an unsubscribe confirmation." elif prediction == 'important': emoji = "⚠️" description = "This appears to be an important email." else: emoji = "❓" description = "Unable to classify with confidence." output = f""" ### Classification Result {emoji} **{prediction.upper()}** **Confidence:** {confidence:.2%} {description} """ return output # Connect event handlers scan_btn.click( fn=scan_emails, inputs=[session_state, email_input, ai_enabled, confidence_threshold], outputs=[scan_output, results_table, session_state] ) refresh_stats_btn.click( fn=get_statistics, inputs=[session_state], outputs=[stats_output] ) test_btn.click( fn=test_single_email, inputs=[test_subject, test_sender, test_body], outputs=[test_output] ) # Load initial statistics demo.load( fn=get_statistics, inputs=[session_state], outputs=[stats_output] ) if __name__ == "__main__": demo.launch()