Spaces:
Sleeping
Sleeping
File size: 13,738 Bytes
b2d89cf 5015aa6 b2d89cf 44b5c03 b2d89cf 5015aa6 44b5c03 b2d89cf 44b5c03 b2d89cf 44b5c03 b2d89cf 44b5c03 b2d89cf 44b5c03 b2d89cf 44b5c03 b2d89cf 44b5c03 b2d89cf 44b5c03 b2d89cf 44b5c03 b2d89cf 44b5c03 b2d89cf 44b5c03 b2d89cf 44b5c03 b2d89cf 44b5c03 b2d89cf 44b5c03 b2d89cf 44b5c03 b2d89cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
import os
import sys
import gradio as gr
import json
import base64
import logging
from pathlib import Path
import uuid
import re
from datetime import datetime
from typing import Dict, List, Optional, Tuple
import pandas as pd
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Fix the model path for HF Space deployment
if os.path.exists('final_optimized_model'):
# Running in HF Space
MODEL_PATH = 'final_optimized_model'
else:
# Running locally
MODEL_PATH = os.path.join(Path(__file__).parent.parent, 'final_optimized_model')
# Import the ML components
sys.path.insert(0, str(Path(__file__).parent))
if os.path.exists('ml_suite'):
# Override the config to use local model path
import ml_suite.config as config
config.FINE_TUNED_MODEL_DIR = MODEL_PATH
from ml_suite.predictor import initialize_predictor, get_ai_prediction_for_email, is_predictor_ready, get_model_status
# Initialize the predictor once when the app starts
logger.info(f"Initializing AI model from {MODEL_PATH}...")
if 'ml_suite' in sys.modules:
initialize_predictor(logger)
model_ready = is_predictor_ready()
logger.info(f"Model initialization status: {'Ready' if model_ready else 'Failed'}")
else:
model_ready = False
logger.error("ML suite not found")
# Store session data
session_data = {}
def create_session():
"""Create a new session"""
session_id = str(uuid.uuid4())
session_data[session_id] = {
'emails': [],
'scan_history': [],
'settings': {
'ai_enabled': True,
'confidence_threshold': 0.5
}
}
return session_id
def parse_email_batch(email_text):
"""Parse batch email input"""
emails = []
current_email = {'subject': '', 'body': '', 'sender': ''}
lines = email_text.strip().split('\n')
current_section = None
for line in lines:
line = line.strip()
if line.lower().startswith('---'): # Email separator
if current_email['subject'] or current_email['body']:
emails.append(current_email)
current_email = {'subject': '', 'body': '', 'sender': ''}
current_section = None
elif line.lower().startswith('from:'):
current_email['sender'] = line[5:].strip()
current_section = 'sender'
elif line.lower().startswith('subject:'):
current_email['subject'] = line[8:].strip()
current_section = 'subject'
elif line.lower().startswith('body:'):
current_section = 'body'
elif line and current_section == 'body':
current_email['body'] += line + '\n'
elif line and current_section == 'subject' and not line.lower().startswith(('from:', 'body:')):
current_email['subject'] += ' ' + line
# Add last email
if current_email['subject'] or current_email['body']:
emails.append(current_email)
return emails
def classify_email(email_data):
"""Classify a single email"""
if not model_ready:
return {
'prediction': 'error',
'confidence': 0,
'error': 'Model not ready'
}
try:
# Prepare email data for predictor
email_for_prediction = {
'snippet': email_data.get('body', '')[:200],
'subject': email_data.get('subject', ''),
'body': email_data.get('body', ''),
'sender': email_data.get('sender', 'unknown@example.com'),
'id': str(uuid.uuid4())
}
result = get_ai_prediction_for_email(email_for_prediction)
return result
except Exception as e:
logger.error(f"Classification error: {str(e)}")
return {
'prediction': 'error',
'confidence': 0,
'error': str(e)
}
def scan_emails(session_id, email_batch_text, ai_enabled, confidence_threshold):
"""Scan a batch of emails"""
if session_id not in session_data:
session_id = create_session()
session = session_data[session_id]
session['settings']['ai_enabled'] = ai_enabled
session['settings']['confidence_threshold'] = confidence_threshold
# Parse emails
emails = parse_email_batch(email_batch_text)
if not emails:
return "No valid emails found in input.", None, session_id
results = []
unsubscribe_count = 0
important_count = 0
for email in emails:
if ai_enabled and model_ready:
classification = classify_email(email)
prediction = classification.get('prediction', 'unknown')
confidence = classification.get('confidence', 0)
if confidence >= confidence_threshold:
if prediction == 'unsubscribe':
unsubscribe_count += 1
status = "β
Unsubscribe"
else:
important_count += 1
status = "β οΈ Important"
else:
status = "β Uncertain"
else:
prediction = 'not_analyzed'
confidence = 0
status = "βοΈ Skipped (AI disabled)"
result = {
'subject': email.get('subject', 'No subject'),
'sender': email.get('sender', 'Unknown'),
'prediction': prediction,
'confidence': confidence,
'status': status,
'body_preview': email.get('body', '')[:100] + '...' if len(email.get('body', '')) > 100 else email.get('body', '')
}
results.append(result)
session['emails'].append(result)
# Create summary
summary = f"""
## Scan Results
**Total Emails Scanned:** {len(results)}
**Unsubscribe Confirmations:** {unsubscribe_count}
**Important Emails:** {important_count}
**Uncertain:** {len(results) - unsubscribe_count - important_count}
### Detailed Results:
"""
for i, result in enumerate(results, 1):
summary += f"\n**{i}. {result['subject']}**\n"
summary += f"- From: {result['sender']}\n"
summary += f"- Status: {result['status']}\n"
if ai_enabled and result['confidence'] > 0:
summary += f"- Confidence: {result['confidence']:.2%}\n"
summary += f"- Preview: {result['body_preview']}\n"
# Create DataFrame for display
df_data = []
for r in results:
df_data.append({
'Subject': r['subject'],
'From': r['sender'],
'Status': r['status'],
'Confidence': f"{r['confidence']:.2%}" if r['confidence'] > 0 else "N/A",
'Preview': r['body_preview'][:50] + '...'
})
df = pd.DataFrame(df_data) if df_data else None
# Add to scan history
session['scan_history'].append({
'timestamp': datetime.now().isoformat(),
'count': len(results),
'unsubscribe': unsubscribe_count,
'important': important_count
})
return summary, df, session_id
def get_statistics(session_id):
"""Get session statistics"""
if session_id not in session_data:
return "No session data available."
session = session_data[session_id]
total_scans = len(session['scan_history'])
total_emails = sum(scan['count'] for scan in session['scan_history'])
total_unsubscribe = sum(scan['unsubscribe'] for scan in session['scan_history'])
total_important = sum(scan['important'] for scan in session['scan_history'])
stats = f"""
## Session Statistics
**Total Scans:** {total_scans}
**Total Emails Processed:** {total_emails}
**Unsubscribe Emails Found:** {total_unsubscribe}
**Important Emails Protected:** {total_important}
### Model Information:
- **Model:** DeBERTa-v3-small
- **Training Samples:** 20,000
- **Accuracy:** 100% on test set
- **Status:** {'π’ Ready' if model_ready else 'π΄ Not Available'}
"""
return stats
# Create Gradio interface
with gr.Blocks(title="Gmail Unsubscriber - Full Web Version", theme=gr.themes.Soft()) as demo:
session_state = gr.State(create_session())
gr.Markdown("""
# π§ Gmail Unsubscriber - Web Version
This is a web-based version of the Gmail Unsubscriber application that uses AI to classify emails as unsubscribe confirmations or important emails.
**Note:** This web version demonstrates the AI classification capabilities. For full Gmail integration with OAuth, please use the desktop version.
""")
with gr.Tabs():
with gr.TabItem("π Email Scanner"):
gr.Markdown("### Batch Email Classification")
with gr.Row():
with gr.Column(scale=2):
email_input = gr.Textbox(
lines=15,
placeholder="""Paste multiple emails here. Format each email as:
From: sender@example.com
Subject: Your subscription has been cancelled
Body:
We're sorry to see you go! Your subscription has been cancelled.
---
From: bank@example.com
Subject: Important: Security Alert
Body:
We detected unusual activity on your account. Please review immediately.
---
(Continue with more emails...)""",
label="Email Batch Input"
)
with gr.Column(scale=1):
ai_enabled = gr.Checkbox(value=True, label="Enable AI Classification")
confidence_threshold = gr.Slider(
minimum=0.1,
maximum=0.9,
value=0.5,
step=0.1,
label="Confidence Threshold"
)
scan_btn = gr.Button("π Scan Emails", variant="primary", size="lg")
scan_output = gr.Markdown()
results_table = gr.DataFrame(label="Scan Results")
with gr.TabItem("π Statistics"):
stats_output = gr.Markdown()
refresh_stats_btn = gr.Button("π Refresh Statistics")
with gr.TabItem("π§ͺ Test Single Email"):
gr.Markdown("### Test AI Classification on a Single Email")
with gr.Row():
with gr.Column():
test_subject = gr.Textbox(label="Subject", placeholder="Your subscription has been cancelled")
test_sender = gr.Textbox(label="From", placeholder="noreply@example.com")
test_body = gr.Textbox(
lines=5,
label="Body",
placeholder="We're sorry to see you go! Your subscription has been successfully cancelled."
)
test_btn = gr.Button("π€ Classify", variant="primary")
with gr.Column():
test_output = gr.Markdown()
with gr.TabItem("βΉοΈ About"):
gr.Markdown("""
## About Gmail Unsubscriber
This application uses a fine-tuned DeBERTa-v3-small model to classify emails automatically.
### Features:
- π€ AI-powered email classification
- π Batch processing capabilities
- π Real-time statistics
- π― Adjustable confidence thresholds
### Model Performance:
- **Accuracy:** 100% on test set
- **F1 Score:** 1.0 for both classes
- **Model Size:** 552MB
- **Training Data:** 20,000 email samples
### Desktop Version Features (Not available in web):
- Gmail OAuth integration
- Automatic email fetching
- One-click unsubscribe
- Email archiving
- Persistent user settings
""")
# Event handlers
def test_single_email(subject, sender, body):
if not subject and not body:
return "Please enter email content to test."
email_data = {
'subject': subject,
'sender': sender,
'body': body
}
result = classify_email(email_data)
if result.get('error'):
return f"β Error: {result['error']}"
prediction = result.get('prediction', 'unknown')
confidence = result.get('confidence', 0)
if prediction == 'unsubscribe':
emoji = "β
"
description = "This appears to be an unsubscribe confirmation."
elif prediction == 'important':
emoji = "β οΈ"
description = "This appears to be an important email."
else:
emoji = "β"
description = "Unable to classify with confidence."
output = f"""
### Classification Result
{emoji} **{prediction.upper()}**
**Confidence:** {confidence:.2%}
{description}
"""
return output
# Connect event handlers
scan_btn.click(
fn=scan_emails,
inputs=[session_state, email_input, ai_enabled, confidence_threshold],
outputs=[scan_output, results_table, session_state]
)
refresh_stats_btn.click(
fn=get_statistics,
inputs=[session_state],
outputs=[stats_output]
)
test_btn.click(
fn=test_single_email,
inputs=[test_subject, test_sender, test_body],
outputs=[test_output]
)
# Load initial statistics
demo.load(
fn=get_statistics,
inputs=[session_state],
outputs=[stats_output]
)
if __name__ == "__main__":
demo.launch() |