prompt_search_engine / core /search_engine.py
krstakis's picture
Add app
8a0c27f
raw
history blame
1.07 kB
from typing import List, Sequence, Tuple
import numpy as np
import faiss
from core.vectorizer import Vectorizer
class PromptSearchEngine(object):
"""
TODO
"""
def __init__(self, prompts: Sequence[str]) -> None:
"""
TODO
"""
self.vectorizer = Vectorizer()
self.corpus_vectors = self.vectorizer.transform(prompts)
self.corpus = prompts
self.corpus_vectors = self.corpus_vectors / np.linalg.norm(self.corpus_vectors, axis=1, keepdims=True)
d = self.corpus_vectors.shape[1]
self.index = faiss.IndexFlatIP(d)
self.index.add(self.corpus_vectors.astype('float32'))
def most_similar(self, query: str, n: int = 5) -> List[Tuple[float, str]]:
"""
TODO
"""
query_vector = self.vectorizer.transform([query]).astype('float32')
query_vector = query_vector / np.linalg.norm(query_vector)
distances, indices = self.index.search(query_vector, n)
return [(distances[0][i], self.corpus[indices[0][i]]) for i in range(n)]