Spaces:
Sleeping
Sleeping
from typing import Sequence | |
import numpy as np | |
from sentence_transformers import SentenceTransformer | |
class Vectorizer(object): | |
""" | |
TODO | |
""" | |
def __init__(self, model_name: str = 'all-MiniLM-L6-v2') -> None: | |
""" | |
Initialize the vectorizer with a pre-trained embedding model. | |
""" | |
self.model = SentenceTransformer(model_name) | |
def transform(self, prompts: Sequence[str]) -> np.ndarray: | |
""" | |
Transform texts into numerical vectors using the specified model. | |
""" | |
return self.model.encode(list(prompts)) | |
def cosine_similarity(query_vector: np.ndarray, corpus_vectors: np.ndarray) -> np.ndarray: | |
""" | |
Calculate cosine similarity between prompt vectors. | |
""" | |
query_norm = query_vector / np.linalg.norm(query_vector) | |
corpus_norms = corpus_vectors / np.linalg.norm(corpus_vectors, axis=1, keepdims=True) | |
return np.dot(corpus_norms, query_norm.T).flatten() | |