File size: 9,278 Bytes
4d88a84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
import os
import re
import json
import hashlib
from pathlib import Path
from dotenv import load_dotenv
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_nvidia_ai_endpoints import ChatNVIDIA
# === UTILS ===
def hash_text(text):
return hashlib.md5(text.encode()).hexdigest()[:8]
def fix_json_text(text):
# Normalize quotes and extract clean JSON
text = text.replace("β", '"').replace("β", '"').replace("β", "'").replace("β", "'")
match = re.search(r'\{.*\}', text, re.DOTALL)
return match.group(0) if match else text
def enrich_chunk_with_llm(text, llm):
prompt = f"""You're a helpful assistant optimizing document retrieval.
Every document you see is about Krishna Vamsi Dhulipalla.
Hereβs a document chunk:
{text}
1. Summarize the key content of this chunk in 1β2 sentences, assuming the overall context is about Krishna.
2. Generate 3 natural-language questions that a user might ask to which this chunk would be a relevant answer, focusing on Krishna-related topics.
Respond in JSON:
{{
"summary": "...",
"synthetic_queries": ["...", "...", "..."]
}}"""
response = llm.invoke(prompt)
content = getattr(response, "content", "").strip()
if not content:
raise ValueError("β οΈ LLM returned empty response")
fixed = fix_json_text(content)
try:
return json.loads(fixed)
except Exception as e:
raise ValueError(f"Invalid JSON from LLM: {e}\n--- Raw Output ---\n{content}")
# === MAIN FUNCTION ===
def create_faiss_store(
md_dir="./personal_data",
chunk_size=600,
chunk_overlap=150,
persist_dir="./faiss_store",
chunk_save_path="all_chunks.json",
llm=None
):
splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
separators=["\n# ", "\n## ", "\n### ", "\n#### ", "\n\n", "\n- ", "\n", ". ", " "],
keep_separator=True,
length_function=len, # Consider switching to tokenizer-based later
is_separator_regex=False
)
docs, all_chunks, failed_chunks = [], [], []
for md_file in Path(md_dir).glob("*.md"):
with open(md_file, "r", encoding="utf-8") as f:
content = f.read().strip()
if not content:
continue
content = re.sub(r'\n#+(\w)', r'\n# \1', content)
docs.append({
"content": content,
"metadata": {
"source": md_file.name,
"header": content.split('\n')[0]
}
})
for doc in docs:
try:
chunks = splitter.split_text(doc["content"])
except Exception as e:
print(f"β Error splitting {doc['metadata']['source']}: {e}")
continue
for i, chunk in enumerate(chunks):
chunk = chunk.strip()
if len(chunk) < 50:
continue
chunk_id = f"{doc['metadata']['source']}_#{i}_{hash_text(chunk)}"
metadata = {
**doc["metadata"],
"chunk_id": chunk_id,
"has_header": chunk.startswith("#"),
"word_count": len(chunk.split())
}
try:
print("π Processing chunk:", chunk_id)
enriched = enrich_chunk_with_llm(chunk, llm)
summary = enriched.get("summary", "")
questions = enriched.get("synthetic_queries", [])
metadata.update({
"summary": summary,
"synthetic_queries": questions
})
enriched_text = (
f"{chunk}\n\n"
f"---\n"
f"πΉ Summary:\n{summary}\n\n"
f"πΈ Related Questions:\n" + "\n".join(f"- {q}" for q in questions)
)
all_chunks.append({
"text": enriched_text,
"metadata": metadata
})
except Exception as e:
print(f"β οΈ LLM failed for {chunk_id}: {e}")
failed_chunks.append(f"{chunk_id} β {str(e)}")
print(f"β
Markdown files processed: {len(docs)}")
print(f"β
Chunks created: {len(all_chunks)} | β οΈ Failed: {len(failed_chunks)}")
# Save enriched chunks
with open(chunk_save_path, "w", encoding="utf-8") as f:
json.dump(all_chunks, f, indent=2, ensure_ascii=False)
print(f"π Saved enriched chunks β {chunk_save_path}")
os.makedirs(persist_dir, exist_ok=True)
version_tag = f"v{len(all_chunks)}_{chunk_size}_{chunk_overlap}"
save_path = os.path.join(persist_dir, version_tag)
os.makedirs(save_path, exist_ok=True)
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={"device": "cpu"},
encode_kwargs={"normalize_embeddings": True}
)
vector_store = FAISS.from_texts(
texts=[chunk["text"] for chunk in all_chunks],
embedding=embeddings,
metadatas=[chunk["metadata"] for chunk in all_chunks]
)
vector_store.save_local(save_path)
print(f"β
FAISS index saved at: {save_path}")
avg_len = sum(len(c['text']) for c in all_chunks) / len(all_chunks) if all_chunks else 0
print(f"π Stats β Chunks: {len(all_chunks)} | Avg length: {avg_len:.1f} characters")
if failed_chunks:
with open("failed_chunks.txt", "w") as f:
for line in failed_chunks:
f.write(line + "\n")
print("π Failed chunk IDs saved to failed_chunks.txt")
dotenv_path = os.path.join(os.getcwd(), ".env")
load_dotenv(dotenv_path)
api_key = os.getenv("NVIDIA_API_KEY")
os.environ["NVIDIA_API_KEY"] = api_key
# Initialize the model
llm = ChatNVIDIA(model="nvidia/llama-3.1-nemotron-70b-instruct")
create_faiss_store(
md_dir="./personal_data",
chunk_size=600,
chunk_overlap=150,
persist_dir="./faiss_store",
llm=llm
)
#
# from langchain.text_splitter import (
# RecursiveCharacterTextSplitter,
# MarkdownHeaderTextSplitter
# )
# from langchain.embeddings import HuggingFaceEmbeddings
# from langchain.vectorstores import FAISS
# from langchain.docstore.document import Document
# from transformers import AutoTokenizer
# from pathlib import Path
# import os
# from typing import List
# def prepare_vectorstore(
# base_path: str,
# faiss_path: str,
# use_markdown_headers: bool = True,
# chunk_size: int = 600,
# chunk_overlap: int = 150,
# model_name: str = "sentence-transformers/all-MiniLM-L6-v2",
# verbose: bool = True
# ) -> FAISS:
# docs = []
# for md_file in Path(base_path).glob("*.md"):
# with open(md_file, "r", encoding="utf-8") as f:
# content = f.read()
# metadata = {
# "source": md_file.name,
# "file_type": "markdown",
# "created_at": md_file.stat().st_ctime
# }
# docs.append(Document(page_content=content, metadata=metadata))
# # Optional Markdown-aware splitting
# if use_markdown_headers:
# header_splitter = MarkdownHeaderTextSplitter(headers_to_split_on=[
# ("#", "h1"), ("##", "h2"), ("###", "h3")
# ])
# structured_chunks = []
# for doc in docs:
# splits = header_splitter.split_text(doc.page_content)
# for chunk in splits:
# chunk.metadata.update(doc.metadata)
# structured_chunks.append(chunk)
# else:
# structured_chunks = docs
# # Tokenizer-based recursive splitting
# tokenizer = AutoTokenizer.from_pretrained(model_name)
# recursive_splitter = RecursiveCharacterTextSplitter(
# chunk_size=chunk_size,
# chunk_overlap=chunk_overlap,
# length_function=lambda text: len(tokenizer.encode(text)),
# separators=["\n## ", "\n### ", "\n\n", "\n", ". "]
# )
# final_chunks: List[Document] = []
# for chunk in structured_chunks:
# sub_chunks = recursive_splitter.split_text(chunk.page_content)
# for i, sub in enumerate(sub_chunks):
# final_chunks.append(Document(
# page_content=sub,
# metadata={**chunk.metadata, "sub_chunk": i}
# ))
# if verbose:
# print(f"β
Total chunks after splitting: {len(final_chunks)}")
# print(f"π Storing to: {faiss_path}")
# embedding_model = HuggingFaceEmbeddings(model_name=model_name)
# vectorstore = FAISS.from_documents(final_chunks, embedding_model)
# vectorstore.save_local(faiss_path)
# if verbose:
# print(f"β
FAISS vectorstore saved at: {os.path.abspath(faiss_path)}")
# return vectorstore
# vectorstore = prepare_vectorstore(
# base_path="./personal_data",
# faiss_path="krishna_vectorstore_hybrid",
# use_markdown_headers=True,
# chunk_size=600,
# chunk_overlap=150,
# verbose=True
# )
|