Spaces:
Sleeping
Sleeping
File size: 10,950 Bytes
3dd5a8e 88d5af8 3dd5a8e 28e5e4b ec87de0 28e5e4b 3dd5a8e 88d5af8 3dd5a8e 88d5af8 3dd5a8e 5245a01 9dfced6 2fb73b9 22c9862 88d5af8 2fb73b9 88d5af8 28e5e4b 3dd5a8e 88d5af8 3dd5a8e 88d5af8 3dd5a8e 22c9862 3dd5a8e 88d5af8 3dd5a8e 88d5af8 3dd5a8e 88d5af8 3dd5a8e 88d5af8 3dd5a8e 88d5af8 3dd5a8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
import streamlit as st
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers.cache_utils import DynamicCache
import os
from time import time
import pandas as pd
from huggingface_hub import login
HF_TOKEN = os.getenv("NEX_MODEL") # Updated key name for clarity
if not HF_TOKEN:
raise ValueError("Hugging Face token not found. Please set the 'NEX_MODEL' environment variable.")
# ==============================
# Helper: Human-readable bytes
def sizeof_fmt(num, suffix="B"):
# Formats bytes as human-readable (e.g. 1.5 GB)
for unit in ["", "K", "M", "G", "T"]:
if abs(num) < 1024.0:
return f"{num:3.2f} {unit}{suffix}"
num /= 1024.0
return f"{num:.2f} P{suffix}"
# ==============================
# Core Model and Caching Logic
# ==============================
def generate(model, input_ids, past_key_values, max_new_tokens):
"""Token-by-token generation using cache for speed."""
device = model.model.embed_tokens.weight.device
origin_len = input_ids.shape[-1]
input_ids = input_ids.to(device)
output_ids = input_ids.clone()
next_token = input_ids
with torch.no_grad():
for _ in range(50):
out = model(
input_ids=next_token,
past_key_values=past_key_values,
use_cache=True
)
logits = out.logits[:, -1, :]
token = torch.argmax(logits, dim=-1, keepdim=True)
output_ids = torch.cat([output_ids, token], dim=-1)
past_key_values = out.past_key_values
next_token = token.to(device)
if model.config.eos_token_id is not None and token.item() == model.config.eos_token_id:
break
return output_ids[:, origin_len:]
def get_kv_cache(model, tokenizer, prompt):
"""Prepares and stores the key-value cache for the initial document/context."""
device = model.model.embed_tokens.weight.device
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
cache = DynamicCache()
with torch.no_grad():
_ = model(
input_ids=input_ids,
past_key_values=cache,
use_cache=True
)
return cache, input_ids.shape[-1]
def clean_up(cache, origin_len):
"""Trims the cache to only include the original document/context tokens."""
for i in range(len(cache.key_cache)):
cache.key_cache[i] = cache.key_cache[i][:, :, :origin_len, :]
cache.value_cache[i] = cache.value_cache[i][:, :, :origin_len, :]
return cache
def calculate_cache_size(cache):
"""Calculate the total memory used by the key-value cache in bytes."""
total_memory = 0
for key in cache.key_cache:
total_memory += key.element_size() * key.nelement()
for value in cache.value_cache:
total_memory += value.element_size() * value.nelement()
return total_memory /(1024*1024)
@st.cache_resource
def load_model_and_tokenizer():
model_name = "GeneZC/MiniChat-1.5-3B"
tokenizer = AutoTokenizer.from_pretrained(
model_name,
use_fast=False,
trust_remote_code=True
,token=HF_TOKEN
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto",
trust_remote_code=True
,token=HF_TOKEN
)
return model, tokenizer
def calculate_cache_size(cache):
"""
Calculate the total memory used by the key-value cache (past_key_values) in megabytes.
Args:
cache: The past_key_values object (usually a tuple of (key, value) pairs per layer).
Returns:
Total memory in megabytes.
"""
total_memory = 0
for layer_cache in cache:
key_tensor, value_tensor = layer_cache
total_memory += key_tensor.element_size() * key_tensor.nelement()
total_memory += value_tensor.element_size() * value_tensor.nelement()
return total_memory / (1024 * 1024) # Convert to MB
def clone_cache(cache):
new_cache = DynamicCache()
for key, value in zip(cache.key_cache, cache.value_cache):
new_cache.key_cache.append(key.clone())
new_cache.value_cache.append(value.clone())
return new_cache
@st.cache_resource
def load_document_and_cache(file_path):
try:
t2 = time()
with open(file_path, 'r') as file:
doc_text = file.read()
doc_text_count = len(doc_text)
max_length = int(1.3 * (doc_text_count * 0.3 + 1))
# Cap the value at 16824
if max_length > 16824:
max_length = 16824
print(f" model_max_length set to: {max_length}")
model, tokenizer = load_model_and_tokenizer()
tokenizer.model_max_length=max_length
system_prompt = f"""
<|system|>
You are a helpful assistant. Provide concise, factual answers based only on the provided context.
If the information is not available, respond with: "I'm sorry, I don't have enough information to answer that."
<|user|>
Context:
{doc_text}
Question:
""".strip()
cache, origin_len = get_kv_cache(model, tokenizer, system_prompt)
t3 = time()
print(f"{t3-t2}")
return cache,doc_text, doc_text_count, model, tokenizer
except FileNotFoundError:
st.error(f"Document file not found at {file_path}")
return None, None, None, None
# ==============================
# Streamlit UI
# ==============================
# Initialize token counters
input_tokens_count = 0
generated_tokens_count = 0
output_tokens_count = 0
# Reset counters with a button
if st.button("π Reset Token Counters"):
input_tokens_count = 0
generated_tokens_count = 0
output_tokens_count = 0
doc_text = None
cache = None
model = None
tokenizer = None
st.success("Token counters have been reset.")
st.title("π DeepSeek QA: Supercharged Caching & Memory Dashboard")
uploaded_file = st.file_uploader("π Upload your document (.txt)", type="txt")
# Initialize variables
doc_text = None
cache = None
model = None
tokenizer = None
if uploaded_file:
log = []
# PART 1: File Upload & Save
t_start1 = time()
temp_file_path = "temp_document.txt"
with open(temp_file_path, "wb") as f:
f.write(uploaded_file.getvalue())
t_end1 = time()
log.append(f"π File Upload & Save Time: {t_end1 - t_start1:.2f} s")
print(f"π File Upload & Save Time: {t_end1 - t_start1:.2f} s")
# PART 2: Document and Cache Load
t_start2 = time()
cache, doc_text,doc_text_count, model, tokenizer = load_document_and_cache(temp_file_path)
t_end2 = time()
log.append(f"π Document & Cache Load Time: {t_end2 - t_start2:.2f} s")
print(f"π Document & Cache Load Time: {t_end2 - t_start2:.2f} s")
# PART 3: Document Preview Display
t_start3 = time()
with st.expander("π Document Preview"):
preview = doc_text[:500] + "..." if len(doc_text) > 500 else doc_text
st.text(preview)
t_end3 = time()
log.append(f"π Document Preview Display Time: {t_end3 - t_start3:.2f} s")
print(f"π Document Preview Display Time: {t_end3 - t_start3:.2f} s")
t_start4 = time()
# PART 4: Show Basic Info
s_cache=calculate_cache_size(cache)
t_end4 = time()
log.append(f"π doc_size_kb Preview Display Time: {t_end4 - t_start4:.2f} s")
print(f"π doc_size_kb Preview Display Time: {t_end4 - t_start4:.2f} s||||||| size of the cache : {s_cache} MB")
#st.info(
# f"Document Chars: {len(doc_text)} | Size: {doc_size_kb:.2f} KB | "
# f"Cache Size: {cache_size if cache_size == 'N/A' else f'{cache_size:.2f} KB'}"
#)
# =========================
# User Query and Generation
# =========================
query = st.text_input("π Ask a question about the document:")
if query and st.button("Generate Answer"):
with st.spinner("Generating answer..."):
log.append("π Query & Generation Steps:")
# PART 4.1: Clone Cache
t_start5 = time()
current_cache = clone_cache(cache)
t_end5 = time()
print(f"π Clone Cache Time: {t_end5 - t_start5:.2f} s")
log.append(f"π Clone Cache Time: {t_end5 - t_start5:.2f} s")
# PART 4.2: Tokenize Prompt
t_start6 = time()
full_prompt = f"""
<|user|>
Question: Please provide a clear and concise answer to the question .{query}
<|assistant|>
""".strip()
input_ids = tokenizer(full_prompt, return_tensors="pt").input_ids
input_tokens_count += input_ids.shape[-1]
t_end6 = time()
print(f"βοΈ Tokenization Time: {t_end6 - t_start6:.2f} s")
log.append(f"βοΈ Tokenization Time: {t_end6 - t_start6:.2f} s")
# PART 4.3: Generate Answer
t_start7 = time()
output_ids = generate(model, input_ids, current_cache, max_new_tokens=4)
last_generation_time = time() - t_start7
print(f"π‘ Generation Time: {last_generation_time:.2f} s")
log.append(f"π‘ Generation Time: {last_generation_time:.2f} s")
generated_tokens_count = output_ids.shape[-1]
generated_tokens_count += generated_tokens_count
output_tokens_count = generated_tokens_count
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
st.success("Answer:")
st.write(response)
print(f"***************************************************************************************")
# Final Info Display
st.info(
# f"Document Chars: {len(doc_text)} | Size: {doc_size_kb:.2f} KB | "
f"Cache Clone Time: {log[-3].split(': ')[1]} | Generation Time: {last_generation_time:.2f} s"
)
# =========================
# Show Log
# =========================
st.sidebar.header("π Performance Log")
for entry in log:
st.sidebar.write(entry)
# =========================
# Sidebar: Cache Loader
# =========================
st.sidebar.header("π οΈ Advanced Options")
st.sidebar.write("Load a previously saved cache for instant document context reuse.")
if st.sidebar.checkbox("Load saved cache"):
cache_file = st.sidebar.file_uploader("Upload saved cache file", type="pth")
if cache_file:
with open("temp_cache.pth", "wb") as f:
f.write(cache_file.getvalue())
try:
loaded_cache = torch.load("temp_cache.pth")
cache = loaded_cache
st.sidebar.success("Cache loaded successfully!")
except Exception as e:
st.sidebar.error(f"Failed to load cache file: {e}") |