Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python | |
# -*- coding: utf-8 -*- | |
""" | |
整合ASR和说话人分离的示例程序 | |
从本地文件读取音频,同时进行转录和说话人分离 | |
""" | |
import json | |
import os | |
import sys | |
from pathlib import Path | |
from dataclasses import asdict | |
# 添加项目根目录到Python路径 | |
sys.path.insert(0, str(Path(__file__).parent.parent)) | |
# 导入必要的模块,使用正确的导入路径 | |
from src.podcast_transcribe.audio import load_audio | |
from src.podcast_transcribe.transcriber import transcribe_audio | |
def main(): | |
"""主函数""" | |
audio_file = Path.joinpath(Path(__file__).parent, "input", "lex_ai_john_carmack_1.wav") # 播客音频文件路径 | |
# audio_file = Path("/Users/konie/Desktop/voices/lex_ai_john_carmack_30.wav") | |
# 模型配置 | |
asr_model_name = "distil-whisper/distil-large-v3.5" # ASR模型名称 | |
diarization_model_name = "pyannote/speaker-diarization-3.1" # 说话人分离模型名称 | |
device = "mps" # 设备类型 | |
segmentation_batch_size = 64 | |
parallel = True | |
# 检查文件是否存在 | |
if not os.path.exists(audio_file): | |
print(f"错误:文件 '{audio_file}' 不存在") | |
return 1 | |
try: | |
print(f"正在加载音频文件: {audio_file}") | |
# 加载音频文件 | |
audio, _ = load_audio(audio_file) | |
print(f"音频信息: 时长={audio.duration_seconds:.2f}秒, 通道数={audio.channels}, 采样率={audio.frame_rate}Hz") | |
result = transcribe_audio( | |
audio, | |
asr_model_name=asr_model_name, | |
diarization_model_name=diarization_model_name, | |
device=device, | |
segmentation_batch_size=segmentation_batch_size, | |
parallel=parallel, | |
) | |
# 输出结果 | |
print("\n转录结果:") | |
print("-" * 50) | |
print(f"检测到的语言: {result.language}") | |
print(f"检测到的说话人数量: {result.num_speakers}") | |
print(f"总文本长度: {len(result.text)} 字符") | |
# 输出每个说话人的部分 | |
speakers = set(segment.speaker for segment in result.segments) | |
for speaker in sorted(speakers): | |
speaker_segments = [seg for seg in result.segments if seg.speaker == speaker] | |
total_duration = sum(seg.end - seg.start for seg in speaker_segments) | |
print(f"\n说话人 {speaker}: 共 {len(speaker_segments)} 个片段, 总时长 {total_duration:.2f} 秒") | |
# 输出详细分段信息 | |
print("\n详细分段信息:") | |
for i, segment in enumerate(result.segments, 1): | |
if i <= 20 or i > len(result.segments) - 20: # 仅显示前20个和后20个分段 | |
print(f"段落 {i}/{len(result.segments)}: [{segment.start:.2f}s - {segment.end:.2f}s] 说话人: {segment.speaker} 文本: {segment.text}") | |
elif i == 21: | |
print("... 省略中间部分 ...") | |
# 将转录结果保存为json文件,文件名取自音频文件名 | |
output_file = Path.joinpath(Path(__file__).parent, "output", f"{audio_file.stem}.transcription.json") | |
# 创建上层文件夹 | |
output_dir = Path.joinpath(Path(__file__).parent, "output") | |
output_dir.mkdir(parents=True, exist_ok=True) | |
with open(output_file, "w") as f: | |
json.dump(asdict(result), f) | |
print(f"转录结果已保存到 {output_file}") | |
return 0 | |
except Exception as e: | |
print(f"错误: {str(e)}") | |
import traceback | |
traceback.print_exc() | |
return 1 | |
if __name__ == "__main__": | |
sys.exit(main()) |