Spaces:
Running
Running
Mask PII
Browse files- phishing_datasets.py +2 -1
- piiranha.py +65 -0
phishing_datasets.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import pandas as pd
|
2 |
from datasets import load_dataset, Dataset
|
3 |
import os
|
|
|
4 |
|
5 |
DATASET_NAME = os.getenv("DATASET_NAME")
|
6 |
|
@@ -12,7 +13,7 @@ def submit_entry(sender, message):
|
|
12 |
global df
|
13 |
|
14 |
sender = sender.strip().replace(" ", "") # Remove all spaces inside sender
|
15 |
-
message = message.strip()
|
16 |
|
17 |
# Check for duplicates
|
18 |
if ((df["sender"] == sender) & (df["message"] == message)).any():
|
|
|
1 |
import pandas as pd
|
2 |
from datasets import load_dataset, Dataset
|
3 |
import os
|
4 |
+
from piiranha import mask_pii
|
5 |
|
6 |
DATASET_NAME = os.getenv("DATASET_NAME")
|
7 |
|
|
|
13 |
global df
|
14 |
|
15 |
sender = sender.strip().replace(" ", "") # Remove all spaces inside sender
|
16 |
+
message = mask_pii(message).strip()
|
17 |
|
18 |
# Check for duplicates
|
19 |
if ((df["sender"] == sender) & (df["message"] == message)).any():
|
piiranha.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
3 |
+
|
4 |
+
model_name = "iiiorg/piiranha-v1-detect-personal-information"
|
5 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
6 |
+
model = AutoModelForTokenClassification.from_pretrained(model_name)
|
7 |
+
|
8 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
+
model.to(device)
|
10 |
+
|
11 |
+
def mask_pii(text, aggregate_redaction=False):
|
12 |
+
# Tokenize input text
|
13 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
14 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
15 |
+
|
16 |
+
# Get the model predictions
|
17 |
+
with torch.no_grad():
|
18 |
+
outputs = model(**inputs)
|
19 |
+
|
20 |
+
# Get the predicted labels
|
21 |
+
predictions = torch.argmax(outputs.logits, dim=-1)
|
22 |
+
|
23 |
+
# Convert token predictions to word predictions
|
24 |
+
encoded_inputs = tokenizer.encode_plus(text, return_offsets_mapping=True, add_special_tokens=True)
|
25 |
+
offset_mapping = encoded_inputs['offset_mapping']
|
26 |
+
|
27 |
+
masked_text = list(text)
|
28 |
+
is_redacting = False
|
29 |
+
redaction_start = 0
|
30 |
+
current_pii_type = ''
|
31 |
+
|
32 |
+
for i, (start, end) in enumerate(offset_mapping):
|
33 |
+
if start == end: # Special token
|
34 |
+
continue
|
35 |
+
|
36 |
+
label = predictions[0][i].item()
|
37 |
+
if label != model.config.label2id['O']: # Non-O label
|
38 |
+
pii_type = model.config.id2label[label]
|
39 |
+
if not is_redacting:
|
40 |
+
is_redacting = True
|
41 |
+
redaction_start = start
|
42 |
+
current_pii_type = pii_type
|
43 |
+
elif not aggregate_redaction and pii_type != current_pii_type:
|
44 |
+
# End current redaction and start a new one
|
45 |
+
apply_redaction(masked_text, redaction_start, start, current_pii_type, aggregate_redaction)
|
46 |
+
redaction_start = start
|
47 |
+
current_pii_type = pii_type
|
48 |
+
else:
|
49 |
+
if is_redacting:
|
50 |
+
apply_redaction(masked_text, redaction_start, end, current_pii_type, aggregate_redaction)
|
51 |
+
is_redacting = False
|
52 |
+
|
53 |
+
# Handle case where PII is at the end of the text
|
54 |
+
if is_redacting:
|
55 |
+
apply_redaction(masked_text, redaction_start, len(masked_text), current_pii_type, aggregate_redaction)
|
56 |
+
|
57 |
+
return ''.join(masked_text)
|
58 |
+
|
59 |
+
def apply_redaction(masked_text, start, end, pii_type, aggregate_redaction):
|
60 |
+
for j in range(start, end):
|
61 |
+
masked_text[j] = ''
|
62 |
+
if aggregate_redaction:
|
63 |
+
masked_text[start] = '[redacted]'
|
64 |
+
else:
|
65 |
+
masked_text[start] = f'[{pii_type}]'
|