Spaces:
Running
Running
Add logging
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
from time import sleep
|
|
|
2 |
|
3 |
import httpx
|
4 |
from fastapi import FastAPI
|
@@ -12,9 +13,17 @@ from urlscan_client import UrlscanClient
|
|
12 |
import requests
|
13 |
import re
|
14 |
|
|
|
|
|
15 |
app = FastAPI()
|
16 |
urlscan = UrlscanClient()
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
class MessageModel(BaseModel):
|
19 |
text: str
|
20 |
|
@@ -74,7 +83,7 @@ def predict(model: InputModel) -> OutputModel:
|
|
74 |
sender = model.query.sender
|
75 |
text = model.query.message.text
|
76 |
|
77 |
-
|
78 |
|
79 |
# Debug sleep
|
80 |
pattern = r"^Sent from your Twilio trial account - sleep (\d+)$"
|
@@ -83,6 +92,7 @@ def predict(model: InputModel) -> OutputModel:
|
|
83 |
if match:
|
84 |
number_str = match.group(1)
|
85 |
sleep_duration = int(number_str)
|
|
|
86 |
sleep(sleep_duration)
|
87 |
return OutputModel(action=ActionModel.JUNK, sub_action=SubActionModel.NONE)
|
88 |
|
@@ -92,6 +102,7 @@ def predict(model: InputModel) -> OutputModel:
|
|
92 |
|
93 |
if match:
|
94 |
category_str = match.group(1)
|
|
|
95 |
match category_str:
|
96 |
case 'junk':
|
97 |
return OutputModel(action=ActionModel.JUNK, sub_action=SubActionModel.NONE)
|
@@ -104,7 +115,7 @@ def predict(model: InputModel) -> OutputModel:
|
|
104 |
label = result[0]['label']
|
105 |
score = result[0]['score']
|
106 |
|
107 |
-
|
108 |
|
109 |
if label == 'LABEL_0':
|
110 |
score = 1 - score
|
@@ -114,20 +125,20 @@ def predict(model: InputModel) -> OutputModel:
|
|
114 |
commercial_stop = False
|
115 |
|
116 |
if re.search(commercial_sender_pattern, sender):
|
117 |
-
|
118 |
score = score * 0.9
|
119 |
if re.search(commercial_stop_pattern, text):
|
120 |
-
|
121 |
score = score * 0.9
|
122 |
commercial_stop = True
|
123 |
else:
|
124 |
-
|
125 |
|
126 |
urls = extract_urls(text)
|
127 |
|
128 |
if urls:
|
129 |
-
|
130 |
-
|
131 |
search_results = [urlscan.search(f"domain:{extract_domain_from_url(url)}") for url in urls]
|
132 |
|
133 |
scan_results = []
|
@@ -139,15 +150,15 @@ def predict(model: InputModel) -> OutputModel:
|
|
139 |
scan_results.append(scan_result)
|
140 |
|
141 |
if not scan_results:
|
142 |
-
|
143 |
scan_results = [urlscan.scan(url) for url in urls]
|
144 |
|
145 |
for result in scan_results:
|
146 |
overall = result.get('verdicts', {}).get('overall', {})
|
147 |
-
|
148 |
if overall.get('hasVerdicts'):
|
149 |
score = overall.get('score')
|
150 |
-
|
151 |
|
152 |
if 0 < overall.get('score'):
|
153 |
score = 1.0
|
@@ -155,10 +166,10 @@ def predict(model: InputModel) -> OutputModel:
|
|
155 |
elif overall.get('score') < 0:
|
156 |
score = score * 0.9
|
157 |
else:
|
158 |
-
|
159 |
score = score * 0.9
|
160 |
|
161 |
-
|
162 |
action = ActionModel.NONE
|
163 |
if score > 0.7:
|
164 |
action=ActionModel.JUNK
|
@@ -168,7 +179,7 @@ def predict(model: InputModel) -> OutputModel:
|
|
168 |
else:
|
169 |
action=ActionModel.JUNK
|
170 |
|
171 |
-
|
172 |
return OutputModel(action=action, sub_action=SubActionModel.NONE)
|
173 |
|
174 |
class ReportModel(BaseModel):
|
|
|
1 |
from time import sleep
|
2 |
+
import logging
|
3 |
|
4 |
import httpx
|
5 |
from fastapi import FastAPI
|
|
|
13 |
import requests
|
14 |
import re
|
15 |
|
16 |
+
|
17 |
+
|
18 |
app = FastAPI()
|
19 |
urlscan = UrlscanClient()
|
20 |
|
21 |
+
# Configuration de base du logging
|
22 |
+
logging.basicConfig(
|
23 |
+
level=logging.DEBUG,
|
24 |
+
format='%(asctime)s [%(levelname)s] %(message)s'
|
25 |
+
)
|
26 |
+
|
27 |
class MessageModel(BaseModel):
|
28 |
text: str
|
29 |
|
|
|
83 |
sender = model.query.sender
|
84 |
text = model.query.message.text
|
85 |
|
86 |
+
logging.info(f"[{sender}] {text}")
|
87 |
|
88 |
# Debug sleep
|
89 |
pattern = r"^Sent from your Twilio trial account - sleep (\d+)$"
|
|
|
92 |
if match:
|
93 |
number_str = match.group(1)
|
94 |
sleep_duration = int(number_str)
|
95 |
+
logging.debug(f"[DEBUG SLEEP] Sleeping for {sleep_duration} seconds for sender {sender}")
|
96 |
sleep(sleep_duration)
|
97 |
return OutputModel(action=ActionModel.JUNK, sub_action=SubActionModel.NONE)
|
98 |
|
|
|
102 |
|
103 |
if match:
|
104 |
category_str = match.group(1)
|
105 |
+
logging.info(f"[DEBUG CATEGORY] Forced category: {category_str} for sender {sender}")
|
106 |
match category_str:
|
107 |
case 'junk':
|
108 |
return OutputModel(action=ActionModel.JUNK, sub_action=SubActionModel.NONE)
|
|
|
115 |
label = result[0]['label']
|
116 |
score = result[0]['score']
|
117 |
|
118 |
+
logging.info(f"[CLASSIFICATION] label={label} score={score}")
|
119 |
|
120 |
if label == 'LABEL_0':
|
121 |
score = 1 - score
|
|
|
125 |
commercial_stop = False
|
126 |
|
127 |
if re.search(commercial_sender_pattern, sender):
|
128 |
+
logging.info("[COMMERCIAL] Commercial sender detected")
|
129 |
score = score * 0.9
|
130 |
if re.search(commercial_stop_pattern, text):
|
131 |
+
logging.info("[COMMERCIAL] STOP keyword detected")
|
132 |
score = score * 0.9
|
133 |
commercial_stop = True
|
134 |
else:
|
135 |
+
logging.info("[COMMERCIAL] STOP keyword missing")
|
136 |
|
137 |
urls = extract_urls(text)
|
138 |
|
139 |
if urls:
|
140 |
+
logging.info(f"[URL] URLs found: {urls}")
|
141 |
+
logging.info("[URL] Searching for previous scans")
|
142 |
search_results = [urlscan.search(f"domain:{extract_domain_from_url(url)}") for url in urls]
|
143 |
|
144 |
scan_results = []
|
|
|
150 |
scan_results.append(scan_result)
|
151 |
|
152 |
if not scan_results:
|
153 |
+
logging.info("[URL] No previous scan found, launching a new scan...")
|
154 |
scan_results = [urlscan.scan(url) for url in urls]
|
155 |
|
156 |
for result in scan_results:
|
157 |
overall = result.get('verdicts', {}).get('overall', {})
|
158 |
+
logging.info(f"[URLSCAN] Overall verdict: {overall}")
|
159 |
if overall.get('hasVerdicts'):
|
160 |
score = overall.get('score')
|
161 |
+
logging.info(f"[URLSCAN] Verdict score: {score}")
|
162 |
|
163 |
if 0 < overall.get('score'):
|
164 |
score = 1.0
|
|
|
166 |
elif overall.get('score') < 0:
|
167 |
score = score * 0.9
|
168 |
else:
|
169 |
+
logging.info(f"[URL] No URL found")
|
170 |
score = score * 0.9
|
171 |
|
172 |
+
logging.info(f"[FINAL SCORE] {score}")
|
173 |
action = ActionModel.NONE
|
174 |
if score > 0.7:
|
175 |
action=ActionModel.JUNK
|
|
|
179 |
else:
|
180 |
action=ActionModel.JUNK
|
181 |
|
182 |
+
logging.info(f"[FINAL ACTION] {action}")
|
183 |
return OutputModel(action=action, sub_action=SubActionModel.NONE)
|
184 |
|
185 |
class ReportModel(BaseModel):
|