Spaces:
Running
Running
Fix official brand exclude.
Browse files- app.py +8 -9
- mnemonic_attack.py +13 -4
- scam_brands.txt +1 -5
app.py
CHANGED
@@ -26,7 +26,7 @@ for handler in logging.root.handlers[:]:
|
|
26 |
|
27 |
logging.basicConfig(
|
28 |
level=logging.DEBUG,
|
29 |
-
format='%(
|
30 |
handlers=[logging.StreamHandler(sys.stdout)]
|
31 |
)
|
32 |
|
@@ -91,12 +91,6 @@ def predict(model: InputModel) -> OutputModel:
|
|
91 |
|
92 |
logging.info(f"[{sender}] {text}")
|
93 |
|
94 |
-
# Brand usurpation detection using confusables
|
95 |
-
confusable_brand = find_confusable_brand(text)
|
96 |
-
if confusable_brand:
|
97 |
-
logging.warning(f"[BRAND USURPATION] Confusable/homoglyph variant of brand '{confusable_brand}' detected in message. Classified as JUNK.")
|
98 |
-
return OutputModel(action=ActionModel.JUNK, sub_action=SubActionModel.NONE)
|
99 |
-
|
100 |
# Debug sleep
|
101 |
pattern = r"^Sent from your Twilio trial account - sleep (\d+)$"
|
102 |
match = re.search(pattern, text)
|
@@ -123,6 +117,13 @@ def predict(model: InputModel) -> OutputModel:
|
|
123 |
case 'promotion':
|
124 |
return OutputModel(action=ActionModel.PROMOTION, sub_action=SubActionModel.NONE)
|
125 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
result = pipe(text)
|
127 |
|
128 |
label = result[0]['label']
|
@@ -140,8 +141,6 @@ def predict(model: InputModel) -> OutputModel:
|
|
140 |
|
141 |
commercial_stop = False
|
142 |
|
143 |
-
|
144 |
-
|
145 |
# Detection of commercial senders (short code or alphanumeric)
|
146 |
if re.search(shorten_sender_pattern, sender):
|
147 |
logging.info("[COMMERCIAL] Commercial sender detected (short code)")
|
|
|
26 |
|
27 |
logging.basicConfig(
|
28 |
level=logging.DEBUG,
|
29 |
+
format='%(levelname)s: %(asctime)s %(message)s',
|
30 |
handlers=[logging.StreamHandler(sys.stdout)]
|
31 |
)
|
32 |
|
|
|
91 |
|
92 |
logging.info(f"[{sender}] {text}")
|
93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
# Debug sleep
|
95 |
pattern = r"^Sent from your Twilio trial account - sleep (\d+)$"
|
96 |
match = re.search(pattern, text)
|
|
|
117 |
case 'promotion':
|
118 |
return OutputModel(action=ActionModel.PROMOTION, sub_action=SubActionModel.NONE)
|
119 |
|
120 |
+
|
121 |
+
# Brand usurpation detection using confusables
|
122 |
+
confusable_brand = find_confusable_brand(text)
|
123 |
+
if confusable_brand:
|
124 |
+
logging.warning(f"[BRAND USURPATION] Confusable/homoglyph variant of brand '{confusable_brand}' detected in message. Classified as JUNK.")
|
125 |
+
return OutputModel(action=ActionModel.JUNK, sub_action=SubActionModel.NONE)
|
126 |
+
|
127 |
result = pipe(text)
|
128 |
|
129 |
label = result[0]['label']
|
|
|
141 |
|
142 |
commercial_stop = False
|
143 |
|
|
|
|
|
144 |
# Detection of commercial senders (short code or alphanumeric)
|
145 |
if re.search(shorten_sender_pattern, sender):
|
146 |
logging.info("[COMMERCIAL] Commercial sender detected (short code)")
|
mnemonic_attack.py
CHANGED
@@ -15,12 +15,19 @@ def find_confusable_brand(message):
|
|
15 |
"""
|
16 |
Check if the message contains a confusable/homoglyph variant of any scam brand.
|
17 |
Returns the matched brand if found, otherwise None.
|
|
|
18 |
"""
|
19 |
for brand in SCAM_BRANDS:
|
20 |
# Build a regex that matches the brand or any confusable variant
|
21 |
-
regex_string = confusable_regex(brand, include_character_padding=
|
22 |
regex = re.compile(regex_string)
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
return brand
|
25 |
return None
|
26 |
|
@@ -30,11 +37,12 @@ def test_find_confusable_brand():
|
|
30 |
"""
|
31 |
test_cases = [
|
32 |
"This is a message from Amazοn support.", # Greek omicron instead of o
|
33 |
-
"Your
|
34 |
"Contact S0ciété Générale for more info.", # Zero instead of O
|
35 |
"Welcome to Netflix!",
|
36 |
"This is a message from a random sender.",
|
37 |
-
"Bonjour, c'est le livreur votre colis ne rentrait pas dans la boite aux lettres merci de choisir un point relais sur : https://mondiaIrelais-expedition.com"
|
|
|
38 |
]
|
39 |
for msg in test_cases:
|
40 |
result = find_confusable_brand(msg)
|
@@ -43,5 +51,6 @@ def test_find_confusable_brand():
|
|
43 |
else:
|
44 |
print(f"[OK] Message: '{msg}' => No confusable brand detected.")
|
45 |
|
|
|
46 |
if __name__ == "__main__":
|
47 |
test_find_confusable_brand()
|
|
|
15 |
"""
|
16 |
Check if the message contains a confusable/homoglyph variant of any scam brand.
|
17 |
Returns the matched brand if found, otherwise None.
|
18 |
+
Does not return the brand if the match is an exact (byte-for-byte, case-sensitive) match.
|
19 |
"""
|
20 |
for brand in SCAM_BRANDS:
|
21 |
# Build a regex that matches the brand or any confusable variant
|
22 |
+
regex_string = confusable_regex(brand, include_character_padding=False)
|
23 |
regex = re.compile(regex_string)
|
24 |
+
for match in regex.finditer(message):
|
25 |
+
matched_text = match.group(0)
|
26 |
+
# Skip if the matched text is exactly the same as the brand (case-sensitive)
|
27 |
+
if matched_text.strip().lower() == brand.lower().strip():
|
28 |
+
continue
|
29 |
+
else:
|
30 |
+
print(f"matched_text: {matched_text.lower().strip()} brand: {brand.lower().strip()}")
|
31 |
return brand
|
32 |
return None
|
33 |
|
|
|
37 |
"""
|
38 |
test_cases = [
|
39 |
"This is a message from Amazοn support.", # Greek omicron instead of o
|
40 |
+
"Your Αpple account has been locked.", # Greek capital alpha instead of a
|
41 |
"Contact S0ciété Générale for more info.", # Zero instead of O
|
42 |
"Welcome to Netflix!",
|
43 |
"This is a message from a random sender.",
|
44 |
+
"Bonjour, c'est le livreur votre colis ne rentrait pas dans la boite aux lettres merci de choisir un point relais sur : https://mondiaIrelais-expedition.com",
|
45 |
+
"599915 est votre code de vérification Leboncoin."
|
46 |
]
|
47 |
for msg in test_cases:
|
48 |
result = find_confusable_brand(msg)
|
|
|
51 |
else:
|
52 |
print(f"[OK] Message: '{msg}' => No confusable brand detected.")
|
53 |
|
54 |
+
|
55 |
if __name__ == "__main__":
|
56 |
test_find_confusable_brand()
|
scam_brands.txt
CHANGED
@@ -40,7 +40,6 @@ Doctolib
|
|
40 |
Douanes françaises
|
41 |
EDF
|
42 |
Engie
|
43 |
-
Eni
|
44 |
Epic Games
|
45 |
Europ Assistance
|
46 |
Facebook
|
@@ -49,7 +48,6 @@ Fnac
|
|
49 |
Fortuneo
|
50 |
Free
|
51 |
GLS
|
52 |
-
Gendarmerie
|
53 |
GitHub
|
54 |
Google
|
55 |
Groupama
|
@@ -81,12 +79,12 @@ N26
|
|
81 |
NMBS
|
82 |
Nespresso
|
83 |
Netflix
|
84 |
-
Nickel
|
85 |
Norauto
|
86 |
Oney
|
87 |
Orange
|
88 |
PayPal
|
89 |
Paylib
|
|
|
90 |
Police Nationale
|
91 |
Préfecture
|
92 |
Pôle emploi
|
@@ -106,9 +104,7 @@ Spotify
|
|
106 |
Steam
|
107 |
Suez
|
108 |
Sécurité Sociale
|
109 |
-
TNT
|
110 |
TikTok
|
111 |
-
Total Direct Energie
|
112 |
TotalEnergies
|
113 |
TransferWise
|
114 |
Trésor Public
|
|
|
40 |
Douanes françaises
|
41 |
EDF
|
42 |
Engie
|
|
|
43 |
Epic Games
|
44 |
Europ Assistance
|
45 |
Facebook
|
|
|
48 |
Fortuneo
|
49 |
Free
|
50 |
GLS
|
|
|
51 |
GitHub
|
52 |
Google
|
53 |
Groupama
|
|
|
79 |
NMBS
|
80 |
Nespresso
|
81 |
Netflix
|
|
|
82 |
Norauto
|
83 |
Oney
|
84 |
Orange
|
85 |
PayPal
|
86 |
Paylib
|
87 |
+
Planity
|
88 |
Police Nationale
|
89 |
Préfecture
|
90 |
Pôle emploi
|
|
|
104 |
Steam
|
105 |
Suez
|
106 |
Sécurité Sociale
|
|
|
107 |
TikTok
|
|
|
108 |
TotalEnergies
|
109 |
TransferWise
|
110 |
Trésor Public
|