kokluch's picture
Add mnemonic detection
05026d9
raw
history blame
6.78 kB
from time import sleep
import logging
import sys
import re
import httpx
from fastapi import FastAPI
from fastapi.responses import JSONResponse, FileResponse
from pydantic import BaseModel
from enum import Enum
from transformers import pipeline
from phishing_datasets import submit_entry
from url_tools import extract_urls, resolve_short_url, extract_domain_from_url
from urlscan_client import UrlscanClient
import requests
from mnemonic_attack import find_confusable_brand
app = FastAPI()
urlscan = UrlscanClient()
# Remove all handlers associated with the root logger object
for handler in logging.root.handlers[:]:
logging.root.removeHandler(handler)
logging.basicConfig(
level=logging.DEBUG,
format='%(asctime)s [%(levelname)s] %(message)s',
handlers=[logging.StreamHandler(sys.stdout)]
)
class MessageModel(BaseModel):
text: str
class QueryModel(BaseModel):
sender: str
message: MessageModel
class AppModel(BaseModel):
version: str
class InputModel(BaseModel):
_version: int
query: QueryModel
app: AppModel
class ActionModel(Enum):
# Insufficient information to determine an action to take. In a query response, has the effect of allowing the message to be shown normally.
NONE = 0
# Allow the message to be shown normally.
ALLOW = 1
# Prevent the message from being shown normally, filtered as Junk message.
JUNK = 2
# Prevent the message from being shown normally, filtered as Promotional message.
PROMOTION = 3
# Prevent the message from being shown normally, filtered as Transactional message.
TRANSACTION = 4
class SubActionModel(Enum):
NONE = 0
class OutputModel(BaseModel):
action: ActionModel
sub_action: SubActionModel
pipe = pipeline(task="text-classification", model="mrm8488/bert-tiny-finetuned-sms-spam-detection")
@app.get("/.well-known/apple-app-site-association", include_in_schema=False)
def get_well_known_aasa():
return JSONResponse(
content={
"messagefilter": {
"apps": [
"X9NN3FSS3T.com.lela.Serenity.SerenityMessageFilterExtension",
"X9NN3FSS3T.com.lela.Serenity"
]
}
},
media_type="application/json"
)
@app.get("/robots.txt", include_in_schema=False)
def get_robots_txt():
return FileResponse("robots.txt")
@app.post("/predict")
def predict(model: InputModel) -> OutputModel:
sender = model.query.sender
text = model.query.message.text
logging.info(f"[{sender}] {text}")
# Brand usurpation detection using confusables
confusable_brand = find_confusable_brand(text)
if confusable_brand:
logging.warning(f"[BRAND USURPATION] Confusable/homoglyph variant of brand '{confusable_brand}' detected in message. Classified as JUNK.")
return OutputModel(action=ActionModel.JUNK, sub_action=SubActionModel.NONE)
# Debug sleep
pattern = r"^Sent from your Twilio trial account - sleep (\d+)$"
match = re.search(pattern, text)
if match:
number_str = match.group(1)
sleep_duration = int(number_str)
logging.debug(f"[DEBUG SLEEP] Sleeping for {sleep_duration} seconds for sender {sender}")
sleep(sleep_duration)
return OutputModel(action=ActionModel.JUNK, sub_action=SubActionModel.NONE)
# Debug category
pattern = r"^Sent from your Twilio trial account - (junk|transaction|promotion)$"
match = re.search(pattern, text)
if match:
category_str = match.group(1)
logging.info(f"[DEBUG CATEGORY] Forced category: {category_str} for sender {sender}")
match category_str:
case 'junk':
return OutputModel(action=ActionModel.JUNK, sub_action=SubActionModel.NONE)
case 'transaction':
return OutputModel(action=ActionModel.TRANSACTION, sub_action=SubActionModel.NONE)
case 'promotion':
return OutputModel(action=ActionModel.PROMOTION, sub_action=SubActionModel.NONE)
result = pipe(text)
label = result[0]['label']
score = result[0]['score']
logging.info(f"[CLASSIFICATION] label={label} score={score}")
if label == 'LABEL_0':
score = 1 - score
# Pattern for detecting an alphanumeric SenderID
alphanumeric_sender_pattern = r'^[A-Za-z][A-Za-z0-9\-\.]{2,14}$'
# Pattern for detecting a short code
shorten_sender_pattern = r'^(?:3\d{4}|[4-8]\d{4})$'
commercial_stop = False
# Detection of commercial senders (short code or alphanumeric)
if re.search(shorten_sender_pattern, sender):
logging.info("[COMMERCIAL] Commercial sender detected (short code)")
score = score * 0.7
elif re.match(alphanumeric_sender_pattern, sender):
logging.info("[COMMERCIAL] Alphanumeric SenderID detected")
score = score * 0.7
urls = extract_urls(text)
if urls:
logging.info(f"[URL] URLs found: {urls}")
logging.info("[URL] Searching for previous scans")
search_results = [urlscan.search(f"domain:{extract_domain_from_url(url)}") for url in urls]
scan_results = []
for search_result in search_results:
results = search_result.get('results', [])
for result in results:
result_uuid = result.get('_id', str)
scan_result = urlscan.get_result(result_uuid)
scan_results.append(scan_result)
if not scan_results:
logging.info("[URL] No previous scan found, launching a new scan...")
scan_results = [urlscan.scan(url) for url in urls]
for result in scan_results:
overall = result.get('verdicts', {}).get('overall', {})
logging.info(f"[URLSCAN] Overall verdict: {overall}")
if overall.get('hasVerdicts'):
score = overall.get('score')
logging.info(f"[URLSCAN] Verdict score: {score}")
if 0 < overall.get('score'):
score = 1.0
break
elif overall.get('score') < 0:
score = score * 0.9
else:
logging.info(f"[URL] No URL found")
score = score * 0.9
logging.info(f"[FINAL SCORE] {score}")
action = ActionModel.NONE
if score > 0.7:
action=ActionModel.JUNK
elif score > 0.5:
if commercial_stop:
action=ActionModel.PROMOTION
else:
action=ActionModel.JUNK
logging.info(f"[FINAL ACTION] {action}")
return OutputModel(action=action, sub_action=SubActionModel.NONE)
class ReportModel(BaseModel):
sender: str
message: str
@app.post("/report")
def report(model: ReportModel):
submit_entry(model.sender, model.message)