Spaces:
Sleeping
Sleeping
delete collection before inserting docs
Browse files- aimakerspace/vectordatabase.py +18 -0
- app.py +1 -0
aimakerspace/vectordatabase.py
CHANGED
@@ -34,6 +34,24 @@ class VectorDatabase:
|
|
34 |
f"Inserted {len(texts)} documents into collection '{self.collection_name}'."
|
35 |
)
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
def search_similar(self, query_text: str):
|
38 |
search_result = self.client.query(
|
39 |
collection_name=self.collection_name,
|
|
|
34 |
f"Inserted {len(texts)} documents into collection '{self.collection_name}'."
|
35 |
)
|
36 |
|
37 |
+
def _delete_collection(self):
|
38 |
+
"""
|
39 |
+
Delete a collection from the Qdrant database.
|
40 |
+
|
41 |
+
Args:
|
42 |
+
collection_name (str): Name of the collection to delete.
|
43 |
+
"""
|
44 |
+
# Check if the collection exists
|
45 |
+
collections = self.client.get_collections()
|
46 |
+
collection_names = [collection.name for collection in collections.collections]
|
47 |
+
|
48 |
+
if self.collection_name in collection_names:
|
49 |
+
# Delete the collection
|
50 |
+
self.client.delete_collection(collection_name)
|
51 |
+
print(f"Collection '{collection_name}' deleted.")
|
52 |
+
else:
|
53 |
+
print(f"Collection '{collection_name}' does not exist.")
|
54 |
+
|
55 |
def search_similar(self, query_text: str):
|
56 |
search_result = self.client.query(
|
57 |
collection_name=self.collection_name,
|
app.py
CHANGED
@@ -31,6 +31,7 @@ class RetrievalAugmentedQAPipeline:
|
|
31 |
def __init__(self, llm: ChatOpenAI(), vector_db_retriever: VectorDatabase) -> None:
|
32 |
self.llm = llm
|
33 |
self.vector_db_retriever = vector_db_retriever
|
|
|
34 |
|
35 |
async def arun_pipeline(self, user_query: str):
|
36 |
context_data = self.vector_db_retriever.search_similar(user_query)
|
|
|
31 |
def __init__(self, llm: ChatOpenAI(), vector_db_retriever: VectorDatabase) -> None:
|
32 |
self.llm = llm
|
33 |
self.vector_db_retriever = vector_db_retriever
|
34 |
+
self.vector_db_retriever.delete_collection()
|
35 |
|
36 |
async def arun_pipeline(self, user_query: str):
|
37 |
context_data = self.vector_db_retriever.search_similar(user_query)
|