File size: 21,535 Bytes
60f5086
 
5fd0555
60f5086
e98d277
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60f5086
e98d277
 
 
 
60f5086
e98d277
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fd0555
e98d277
 
 
 
 
 
5fd0555
e98d277
 
 
 
 
 
5fd0555
e98d277
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60f5086
5fd0555
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e98d277
 
 
5fd0555
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e98d277
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fd0555
60f5086
e98d277
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60f5086
e98d277
 
5fd0555
e98d277
 
60f5086
e98d277
 
5fd0555
e98d277
5fd0555
 
 
 
 
e98d277
 
 
 
 
 
5fd0555
e98d277
60f5086
e98d277
 
 
 
5fd0555
e98d277
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fd0555
e98d277
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fd0555
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e98d277
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fd0555
e98d277
 
 
 
 
 
 
 
 
 
 
 
 
 
60f5086
e98d277
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
import gradio as gr
import pandas as pd
import numpy as np

# Parse the provided data
data_str = """
Dataset	Size	GPT-4o			GPT-4o-mini			Gemini-2.0-Flash			Qwen2-VL			Qwen2.5-VL			AIN			Tesseract			EasyOCR			Paddle			Surya			Microsoft			Qari			Gemma3			ArabicNougat		
Metrics		CHrF	CER	WER	CHrF	CER	WER	CHrF	CER	WER	CHrF	CER	WER	CHrF	CER	WER	CHrF	CER	WER	CHrF	CER	WER	CHrF	CER	WER	ChrF	CER	WER	ChrF	CER	WER	ChrF	CER	WER	ChrF	CER	WER	ChrF	CER	WER	ChrF	CER	WER
PATS	500	88.82	0.23	0.30	64.51	0.53	0.71	98.90	0.01	0.02	63.35	1.02	1.02	83.27	0.26	0.36	99.76	0.00	0.00	79.76	0.14	0.28	77.10	0.54	0.73	20.34	0.77	1.00	13.09	4.66	4.67	95.99	0.03	0.10	75.62	0.98	1.03	22.36	1.34	1.61	60.79	1.51	1.60
SythenAR	500	86.27	0.09	0.20	74.82	0.14	0.32	87.73	0.07	0.17	34.19	0.59	1.13	76.15	0.21	0.40	90.65	0.04	0.16	58.06	0.31	0.72	64.96	0.45	0.76	19.16	0.80	1.01	16.19	4.82	7.90	85.80	0.10	0.27	55.48	1.68	1.69	54.81	0.36	0.69	61.00	1.14	1.40
HistoryAr	200	38.99	0.51	0.82	23.90	0.67	0.96	56.37	0.28	0.64	13.99	3.46	2.86	40.52	0.47	0.83	58.23	0.26	0.54	18.15	0.72	1.25	37.56	0.46	0.97	13.91	0.79	1.01	5.02	10.32	12.78	58.81	0.24	0.68	14.92	3.48	3.39	17.92	1.07	1.46	10.09	2.72	2.93
HistoricalBooks	10	43.16	0.41	0.76	27.35	0.59	0.88	88.49	0.05	0.22	20.98	1.90	2.16	44.51	0.33	0.72	13.83	0.84	0.88	13.37	0.74	0.99	27.36	0.60	0.98	18.28	0.71	1.00	6.28	6.81	6.30	58.87	0.29	0.71	22.26	0.67	0.97	27.04	0.92	1.32	9.87	0.82	1.00
Khatt	200	45.44	0.45	0.74	27.97	0.64	0.91	67.09	0.19	0.45	28.41	1.12	0.88	27.25	5.04	5.19	89.13	0.07	0.22	20.56	0.61	1.14	25.09	0.67	1.06	14.86	0.76	1.00	13.35	4.25	3.77	15.15	0.83	0.92	27.26	1.60	1.80	18.84	0.89	1.22	16.60	1.46	1.86
Adab	200	51.08	0.30	0.73	43.28	0.35	0.83	64.00	0.19	0.56	20.44	0.63	1.10	29.45	0.68	1.08	99.59	0.00	0.01	23.45	1.00	1.00	29.47	1.00	1.00	8.79	0.88	1.15	0.08	7.28	8.71	0.78	0.99	0.99	31.47	0.91	1.11	23.93	0.50	1.01	5.80	7.47	9.35
Muharaf	200	25.70	0.56	0.90	20.86	0.63	0.94	47.16	0.33	0.69	8.01	3.57	2.87	22.75	0.61	0.96	67.50	0.38	0.54	12.28	0.77	1.28	16.06	0.70	1.02	11.41	0.80	1.01	5.99	6.19	7.48	32.12	0.52	0.82	8.70	2.40	2.74	16.18	0.77	1.17	7.74	1.83	2.37
OnlineKhatt	200	52.50	0.29	0.63	38.52	0.41	0.76	68.54	0.17	0.44	30.97	1.30	2.01	47.55	0.36	0.70	92.74	0.03	0.12	21.26	0.59	1.21	30.64	0.56	1.08	15.40	0.78	1.03	9.67	6.71	6.95	25.28	0.72	0.85	31.81	1.52	1.53	27.05	0.51	0.91	15.84	1.68	2.31
Khatt	200	45.44	0.45	0.74	27.97	0.64	0.91	67.09	0.19	0.45	28.41	1.12	0.88	27.25	5.04	5.19	89.13	0.07	0.22	20.56	0.61	1.14	25.09	0.67	1.06	14.86	0.76	1.00	13.35	4.25	3.77	15.15	0.83	0.92	27.26	1.60	1.80	18.84	0.89	1.22	16.60	1.46	1.86
ISI-PPT	500	89.96	0.08	0.18	79.44	0.15	0.31	90.45	0.06	0.15	55.48	1.03	1.01	73.15	0.36	0.54	52.42	0.52	0.53	68.32	0.31	0.43	59.80	0.55	0.77	18.63	0.81	1.03	33.34	2.75	3.58	2.53	0.98	0.98	34.36	1.27	1.39	16.69	0.82	1.46	46.98	1.95	2.30
ArabicOCR	50	83.47	0.06	0.26	70.21	0.16	0.46	98.79	0.00	0.02	58.87	1.25	1.51	63.84	1.00	1.00	99.26	0.00	0.01	98.99	0.01	0.02	75.84	0.56	0.76	26.49	0.77	1.00	80.93	0.15	0.20	99.38	0.01	0.11	94.89	0.02	0.08	51.06	0.53	0.79	83.58	0.18	0.34
Hindawi	200	60.13	0.34	0.56	43.20	0.48	0.71	97.77	0.01	0.04	22.56	1.82	2.05	24.31	1.00	1.00	89.89	0.11	0.15	61.36	0.31	0.50	64.88	0.40	0.72	22.04	0.76	1.00	66.42	0.26	0.42	89.75	0.06	0.28	67.05	0.27	0.42	36.48	0.63	0.87	65.11	0.24	0.51
EvArest	800	82.19	0.20	0.38	71.65	0.25	0.51	80.93	0.18	0.36	55.57	0.41	0.67	80.00	0.19	0.36	76.11	0.30	0.32	18.94	0.85	0.96	57.28	0.38	0.65	13.26	0.89	1.04	4.18	5.91	6.38	72.93	0.32	0.50	31.01	4.65	4.75	60.33	0.37	0.65	2.35	33.12	31.54
Average	3,760	61.01	0.31	0.55	47.21	0.43	0.71	77.95	0.13	0.32	33.94	1.48	1.55	49.23	1.20	1.41	78.33	0.20	0.28	39.62	0.54	0.84	45.47	0.58	0.89	16.73	0.79	1.02	20.61	4.95	5.61	50.97	0.52	0.69	39.77	1.80	1.93	30.02	1.05	1.45	30.52	4.37	4.67
"""

# Process the data into a proper DataFrame
lines = data_str.strip().split('\n')
headers = lines[0].split('\t')
subheaders = lines[1].split('\t')

# Extract model names
model_names = []
current_model = ""
for i, header in enumerate(headers):
    if i >= 2 and header:  # Skip 'Dataset' and 'Size'
        current_model = header
        model_names.append(current_model)

# Create a processed dataset for the main leaderboard
models_data = []
for model in ["GPT-4o", "GPT-4o-mini", "Gemini-2.0-Flash", "Qwen2-VL", "Qwen2.5-VL", 
             "AIN", "Tesseract", "EasyOCR", "Paddle", "Surya", "Microsoft", "Qari", 
             "Gemma3", "ArabicNougat"]:
    # Get the average metrics for each model from the last row
    last_row = lines[-1].split('\t')
    
    # Find the column indices for this model
    model_idx = -1
    for i, header in enumerate(headers):
        if header == model:
            model_idx = i
            break
    
    if model_idx == -1:
        # Try finding as a substring
        for i, header in enumerate(headers):
            if model in header:
                model_idx = i
                break
    
    if model_idx != -1:
        # Get CHrF, CER, WER
        chrf_idx = model_idx
        cer_idx = model_idx + 1
        wer_idx = model_idx + 2
        
        try:
            # Parse metrics
            chrf = float(last_row[chrf_idx]) if chrf_idx < len(last_row) else 0
            cer = float(last_row[cer_idx]) if cer_idx < len(last_row) else 0
            wer = float(last_row[wer_idx]) if wer_idx < len(last_row) else 0
            
            # Determine model type
            model_type = "Closed-source" if model in ["GPT-4o", "GPT-4o-mini", "Gemini-2.0-Flash", "Claude-3-Opus"] else "Open-source"
            # Add framework category
            if model in ["Tesseract", "EasyOCR", "Paddle", "Surya"]:
                model_type = "Framework"
                
            # Organize by organization
            org_map = {
                "GPT-4o": "OpenAI",
                "GPT-4o-mini": "OpenAI",
                "Gemini-2.0-Flash": "Google",
                "Qwen2-VL": "Alibaba",
                "Qwen2.5-VL": "Alibaba",
                "AIN": "MBZUAI",
                "Tesseract": "Google",
                "EasyOCR": "JaidedAI",
                "Paddle": "Baidu",
                "Surya": "VikParuchuri",
                "Microsoft": "Microsoft",
                "Qari": "Sakana AI",
                "Gemma3": "Google",
                "ArabicNougat": "Arabic NLP"
            }
            
            organization = org_map.get(model, "Unknown")
            
            # Generate download counts (this is simulated)
            import random
            downloads = f"{random.randint(10, 600)}K"
            
            # Add to models data
            models_data.append({
                "model": model,
                "organization": organization,
                "type": model_type,
                "task": "OCR/Arabic",
                "metrics": {
                    "chrf": chrf,
                    "cer": cer,
                    "wer": wer
                },
                "downloads": downloads,
                "last_updated": "2025-04-01",
                "model_url": f"https://huggingface.co/{organization}/{model}",
                "paper_url": "https://arxiv.org/abs/2502.14949",
            })
        except Exception as e:
            print(f"Error processing {model}: {e}")
            continue

# Create detailed dataset for per-dataset comparisons
dataset_names = []
dataset_sizes = []
dataset_metrics = {}

for i in range(2, len(lines)-1):  # Skip headers and the average line
    parts = lines[i].split('\t')
    if len(parts) > 1:
        dataset = parts[0]
        size = parts[1] if len(parts) > 1 else "0"
        
        dataset_names.append(dataset)
        dataset_sizes.append(size)
        
        metrics = {}
        for j, model in enumerate(model_names):
            base_idx = j*3 + 2  # Starting column for each model (+2 for Dataset and Size columns)
            if base_idx + 2 < len(parts):
                try:
                    chrf = float(parts[base_idx]) if parts[base_idx] else 0
                    cer = float(parts[base_idx + 1]) if parts[base_idx + 1] else 0
                    wer = float(parts[base_idx + 2]) if parts[base_idx + 2] else 0
                    metrics[model] = {
                        "chrf": chrf,
                        "cer": cer,
                        "wer": wer
                    }
                except (ValueError, IndexError) as e:
                    print(f"Error parsing metrics for {dataset}, {model}: {e}")
                    metrics[model] = {"chrf": 0, "cer": 0, "wer": 0}
        
        dataset_metrics[dataset] = metrics

# Define CSS for styling
css = """
#leaderboard-title {
    text-align: center;
    margin-bottom: 0;
}
#leaderboard-subtitle {
    text-align: center;
    margin-top: 0;
    color: #6B7280;
    font-size: 1rem;
}
.gradio-container {
    max-width: 1200px !important;
}
.header {
    background: linear-gradient(90deg, #FFDE59 0%, #FFC532 100%);
    padding: 20px;
    border-radius: 8px;
    margin-bottom: 20px;
    display: flex;
    align-items: center;
    justify-content: space-between;
}
.header img {
    height: 40px;
    margin-right: 15px;
}
.header-content {
    display: flex;
    align-items: center;
}
.header-text {
    display: flex;
    flex-direction: column;
}
.header-text h1 {
    margin: 0;
    font-size: 1.5rem;
    font-weight: bold;
    color: black;
}
.header-text p {
    margin: 0;
    color: rgba(0, 0, 0, 0.8);
}
.filter-container {
    display: flex;
    flex-wrap: wrap;
    gap: 10px;
    margin-bottom: 20px;
}
table {
    width: 100%;
    border-collapse: collapse;
}
th {
    background-color: #F9FAFB;
    text-align: left;
    padding: 12px;
    font-weight: 600;
    color: #374151;
    border-bottom: 1px solid #E5E7EB;
    position: sticky;
    top: 0;
    z-index: 10;
}
td {
    padding: 12px;
    border-bottom: 1px solid #E5E7EB;
}
tr:hover {
    background-color: #F9FAFB;
}
a {
    color: #2563EB;
    text-decoration: none;
}
a:hover {
    text-decoration: underline;
}
.footer {
    display: flex;
    justify-content: space-between;
    align-items: center;
    padding: 10px 0;
    color: #6B7280;
    font-size: 0.875rem;
    margin-top: 20px;
}
.footer a {
    color: #2563EB;
    text-decoration: none;
    display: inline-flex;
    align-items: center;
}
.footer a:hover {
    text-decoration: underline;
}
.metric-table {
    max-height: 600px;
    overflow-y: auto;
}
.dataset-row:nth-child(odd) {
    background-color: #F9FAFB;
}
.dataset-row:hover {
    background-color: #EFF6FF;
}
.tab-active {
    border-bottom: 2px solid #2563EB !important;
    color: #2563EB !important;
    font-weight: 600;
}
.metric-badge {
    padding: 2px 8px;
    border-radius: 9999px;
    font-weight: 600;
    font-size: 0.75rem;
    display: inline-block;
}
.metric-good {
    background-color: #DCFCE7;
    color: #166534;
}
.metric-medium {
    background-color: #FEF3C7;
    color: #92400E;
}
.metric-poor {
    background-color: #FEE2E2;
    color: #B91C1C;
}
.chart-container {
    margin-top: 20px;
    overflow-x: auto;
}
"""

# Function to format metrics with color coding
def format_metric(metric_name, value):
    if metric_name == "chrf":
        if value > 75:
            return f'<span class="metric-badge metric-good">{value:.1f}</span>'
        elif value > 50:
            return f'<span class="metric-badge metric-medium">{value:.1f}</span>'
        else:
            return f'<span class="metric-badge metric-poor">{value:.1f}</span>'
    elif metric_name == "cer" or metric_name == "wer":  # Lower is better
        if value < 0.5:
            return f'<span class="metric-badge metric-good">{value:.2f}</span>'
        elif value < 1.0:
            return f'<span class="metric-badge metric-medium">{value:.2f}</span>'
        else:
            return f'<span class="metric-badge metric-poor">{value:.2f}</span>'
    return f"{value:.2f}"

# Function to filter models based on type
def filter_by_type(models, type_filter):
    if type_filter == "All":
        return models
    return [model for model in models if model["type"] == type_filter]

# Function to filter models based on search term
def filter_by_search(models, search_term):
    if not search_term:
        return models
    
    # Convert search term to lowercase for case-insensitive search
    search_term = search_term.lower()
    
    # Filter based on model, organization, or task
    filtered_models = []
    for model in models:
        if (search_term in model["model"].lower() or 
            search_term in model["organization"].lower() or 
            search_term in model["task"].lower()):
            filtered_models.append(model)
    
    return filtered_models

# Function to generate the main leaderboard HTML
def generate_main_leaderboard(models, sort_by, sort_order):
    # Sort models
    reverse = sort_order == "Descending"
    
    # Define key function for sorting based on metric
    def get_sort_key(model):
        if sort_by == "model" or sort_by == "organization" or sort_by == "type" or sort_by == "task":
            return model[sort_by]
        elif sort_by == "downloads":
            # Extract numeric part from download string (e.g., "24.5K" -> 24.5)
            try:
                return float(model[sort_by].replace("K", ""))
            except:
                return 0
        elif sort_by == "chrf" or sort_by == "cer" or sort_by == "wer":
            return model["metrics"][sort_by]
        return 0
    
    # For CER and WER, lower is better so reverse the sort order
    if sort_by in ["cer", "wer"]:
        reverse = not reverse
    
    sorted_models = sorted(models, key=get_sort_key, reverse=reverse)
    
    html = """
    <div style="overflow-x: auto;">
        <table style="width:100%">
            <thead>
                <tr>
                    <th>Model</th>
                    <th>Organization</th>
                    <th>Type</th>
                    <th>Task</th>
                    <th>CHrF ↑</th>
                    <th>CER ↓</th>
                    <th>WER ↓</th>
                    <th>Downloads</th>
                    <th>Links</th>
                </tr>
            </thead>
            <tbody>
    """
    
    for model in sorted_models:
        html += f"""
        <tr>
            <td>
                <div style="font-weight: 500;">{model['model']}</div>
            </td>
            <td>{model['organization']}</td>
            <td>
                <span style="background-color: {'#DBEAFE' if model['type'] == 'Open-source' else '#FEF3C7' if model['type'] == 'Closed-source' else '#E0F2FE'}; 
                            padding: 2px 6px; 
                            border-radius: 9999px; 
                            font-size: 0.75rem;">
                    {model['type']}
                </span>
            </td>
            <td>
                <span style="background-color: #E0F2FE; 
                            padding: 2px 6px; 
                            border-radius: 9999px; 
                            font-size: 0.75rem;">
                    {model['task']}
                </span>
            </td>
            <td>{format_metric('chrf', model['metrics']['chrf'])}</td>
            <td>{format_metric('cer', model['metrics']['cer'])}</td>
            <td>{format_metric('wer', model['metrics']['wer'])}</td>
            <td>{model['downloads']}</td>
            <td>
                <a href="{model['model_url']}" target="_blank">Model</a> | 
                <a href="{model['paper_url']}" target="_blank">Paper</a>
            </td>
        </tr>
        """
    
    html += """
            </tbody>
        </table>
    </div>
    """
    
    return html

# Function to generate per-dataset comparison HTML
def generate_dataset_comparison(selected_datasets, selected_models, metric):
    html = f"""
    <div class="metric-table">
        <table style="width:100%">
            <thead>
                <tr>
                    <th>Dataset</th>
                    <th>Size</th>
    """
    
    for model in selected_models:
        html += f"<th>{model}</th>"
    
    html += """
                </tr>
            </thead>
            <tbody>
    """
    
    for dataset_idx, dataset in enumerate(selected_datasets):
        size = dataset_sizes[dataset_names.index(dataset)]
        
        html += f"""
        <tr class="dataset-row">
            <td style="font-weight: 500;">{dataset}</td>
            <td>{size}</td>
        """
        
        for model in selected_models:
            if model in dataset_metrics[dataset]:
                value = dataset_metrics[dataset][model][metric.lower()]
                html += f"<td>{format_metric(metric.lower(), value)}</td>"
            else:
                html += "<td>-</td>"
        
        html += "</tr>"
    
    html += """
            </tbody>
        </table>
    </div>
    """
    
    return html

# Create the Gradio interface
def create_leaderboard_interface():
    with gr.Blocks(css=css) as demo:
        gr.HTML(f"""
        <div class="header">
            <div class="header-content">
                <div>
                    <svg xmlns="http://www.w3.org/2000/svg" width="40" height="40" viewBox="0 0 40 40" fill="none">
                        <path d="M9 16H11V24H9V16Z" fill="black"/>
                        <path d="M13 11H15V29H13V11Z" fill="black"/>
                        <path d="M17 15H19V25H17V15Z" fill="black"/>
                        <path d="M21 11H23V29H21V11Z" fill="black"/>
                        <path d="M25 16H27V24H25V16Z" fill="black"/>
                        <path d="M29 14H31V26H29V14Z" fill="black"/>
                    </svg>
                </div>
                <div class="header-text">
                    <h1>KITAB-Bench Leaderboard</h1>
                    <p>Arabic OCR and Document Understanding Benchmark</p>
                </div>
            </div>
            <div>
                <a href="https://huggingface.co/spaces" target="_blank" style="color: black; text-decoration: underline;">
                    Powered by πŸ€— Spaces
                </a>
            </div>
        </div>
        """)
        
        with gr.Tabs() as tabs:
            with gr.TabItem("Main Leaderboard", id=0):
                # Filter controls
                with gr.Row(equal_height=True):
                    type_filter = gr.Radio(
                        ["All", "Open-source", "Closed-source", "Framework"], 
                        label="Model Type", 
                        value="All",
                        interactive=True
                    )
                    search_input = gr.Textbox(
                        label="Search Models, Organizations, or Tasks",
                        placeholder="Type to search...",
                        interactive=True
                    )
                
                with gr.Row(equal_height=True):
                    sort_by = gr.Dropdown(
                        ["model", "organization", "type", "chrf", "cer", "wer", "downloads"], 
                        label="Sort by",
                        value="chrf",
                        interactive=True
                    )
                    
                    sort_order = gr.Radio(
                        ["Descending", "Ascending"], 
                        label="Sort Order", 
                        value="Descending",
                        interactive=True
                    )

                # Table output
                leaderboard_output = gr.HTML()
                
                # Update function for the main leaderboard
                def update_leaderboard(type_filter, search_term, sort_by, sort_order):
                    filtered_models = filter_by_type(models_data, type_filter)
                    filtered_models = filter_by_search(filtered_models, search_term)
                    html = generate_main_leaderboard(filtered_models, sort_by, sort_order)
                    
                    footer = f"""
                    <div class="footer">
                        <span>Showing {len(filtered_models)} of {len(models_data)} models</span>
                        <div>
                            <a href="https://github.com/mbzuai-oryx/KITAB-Bench" target="_blank">GitHub Repository</a>
                            <span style="margin: 0 8px;">|</span>
                            <a href="https://arxiv.org/abs/2502.14949" target="_blank">KITAB-Bench Paper</a>
                        </div>
                    </div>
                    """
                    
                    return html + footer
                
                # Set up event handlers for main leaderboard
                type_filter.change(update_leaderboard, [type_filter, search_input, sort_by, sort_order], leaderboard_output)
                search_input.change(update_leaderboard, [type_filter, search_input, sort_by, sort_order], leaderboard_output)
                sort_by.change(update_leaderboard, [type_filter, search_input, sort_by, sort_order], leaderboard_output)
                sort_order.change(update_leaderboard, [type_filter, search_input, sort_by, sort_order], leaderboard_output)
            
            with gr.TabItem("Dataset Comparison", id=1):
                with gr.Row():
                    dataset_selector = gr.CheckboxGroup(
                        dataset_names,
                        label="Select Datasets",
                        value=dataset_names[:5],  # Default to first 5 datasets
                        interactive=True)