Spaces:
Running
Running
File size: 3,496 Bytes
38cee1c 9b5b26a c19d193 6aae614 8fe992b 9b5b26a 5df72d6 9b5b26a 38cee1c 9b5b26a 303a606 38cee1c 9b5b26a 38cee1c 303a606 38cee1c 303a606 38cee1c 9b5b26a 8c01ffb 6aae614 ae7a494 e121372 bf6d34c 29ec968 fe328e0 13d500a 8c01ffb 9b5b26a 8c01ffb 861422e 9b5b26a 8c01ffb 8fe992b 38cee1c 8c01ffb 861422e 8fe992b 9b5b26a 8c01ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
from smolagents import CodeAgent,DuckDuckGoSearchTool,HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool
from Gradio_UI import GradioUI
# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def monte_carlo_integration(func_expr: str, a: float, b: float, samples: int = 10000) -> str:
"""A tool that computes the approximate definite integral of a given function between limits a and b using Monte Carlo integration.
Args:
func_expr: A string representing a mathematical function of x (e.g., "x**2 + 3*x + 2" or "math.sin(x)").
a: The lower bound of integration.
b: The upper bound of integration.
samples: The number of random samples to use for the approximation. Defaults to 10000.
Returns:
A string representing the approximate value of the integral.
"""
import random
import math
# Create a safe dictionary of math functions and add the math module itself.
safe_dict = {k: getattr(math, k) for k in dir(math) if not k.startswith("__")}
safe_dict["math"] = math # Allow expressions to use the 'math' prefix
# Define the function to integrate safely using eval
def f(x):
try:
# Only allow x and math functions in the evaluation context
safe_dict["x"] = x
return eval(func_expr, {"__builtins__": {}}, safe_dict)
except Exception as e:
raise ValueError(f"Error evaluating function at x={x}: {e}")
total = 0.0
for _ in range(samples):
x = random.uniform(a, b)
total += f(x)
integral = (b - a) * total / samples
return f"The approximate integral of {func_expr} from {a} to {b} is {integral:.4f}"
@tool
def get_current_time_in_timezone(timezone: str) -> str:
"""A tool that fetches the current local time in a specified timezone.
Args:
timezone: A string representing a valid timezone (e.g., 'America/New_York').
"""
try:
# Create timezone object
tz = pytz.timezone(timezone)
# Get current time in that timezone
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
return f"The current local time in {timezone} is: {local_time}"
except Exception as e:
return f"Error fetching time for timezone '{timezone}': {str(e)}"
final_answer = FinalAnswerTool()
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud'
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
custom_role_conversions=None,
)
# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
agent = CodeAgent(
model=model,
tools=[final_answer, monte_carlo_integration, get_current_time_in_timezone, image_generation_tool, DuckDuckGoSearchTool()], ## add your tools here (don't remove final answer)
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name=None,
description=None,
prompt_templates=prompt_templates
)
GradioUI(agent).launch() |